Clustering

K-means
e partition (z1,zs,...,2,),z; € R? into (S1,Ss,...,Sk) k classes
k
arginin 3" o - )
1=0 keS;

e |ngeneral, NP-hard
e Heuristic: Lloyd's algorithm
o Randomized initialization

o Recursively, assign points to the closest center and recompute the center

o Alocal optima is shown as follows:
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o Terminates since decreasing average distance each iteration

Spectral Graph Clustering

e /¢, not the best in some scenarios
e |n general, we shall define similarities between points

sigma=3,000000e-01
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e Intra-group edges have large weights
¢ Inter-group edges have small weights

Different types of graphs

e e-neighborhood w;; = 1 iff e-close
e KNN graph
e fully connected with w;; self defined
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Graph Laplacian

e Disthe diagonal matrix D = diag(d;,ds,...,d,).
e A isthe adjacent matrix
e Graph Laplacian: L = D — A.

Theorem Let G be an undirected graph with nonnegative weights.

e 4 zero eigenvalues of L = # connected components in G
e L is symmetric and also positive semidefinite
e Freetoassume:0 =X <X <...< )\,
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