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Abstract

Federated learning (FL) provides an effective collaborative training paradigm, al-
lowing local agents to train a global model jointly without sharing their local data
to protect privacy. However, due to the heterogeneous nature of local data, it is
challenging to optimize or even define fairness of the trained global model for the
agents. For instance, existing work usually considers accuracy equity as fairness
for different agents in FL, which is limited, especially under the heterogeneous
setting, since it is intuitively “unfair” to enforce agents with high-quality data to
achieve similar accuracy to those who contribute low-quality data. In this work,
we aim to address such limitations and propose a formal fairness definition in
FL, fairness via agent-awareness (FAA), which takes different contributions of
heterogeneous agents into account. Under FAA, the performance of agents with
high-quality data will not be sacrificed just due to the existence of large amounts
of agents with low-quality data. In addition, we propose a fair FL training al-
gorithm based on agent clustering (FOCUS) to achieve fairness in FL measured
by FAA. Theoretically, we prove the convergence and optimality of FOCUS un-
der mild conditions for linear and general convex loss functions with bounded
smoothness. We also prove that FOCUS always achieves higher fairness in terms
of FAA compared with standard FedAvg under both linear and general convex
loss functions. Empirically, we evaluate FOCUS on four datasets, including syn-
thetic data, images, and texts under different settings, and we show that FOCUS
achieves significantly higher fairness in terms of FAA while maintaining similar
or even higher prediction accuracy compared with FedAvg and other existing fair
FL algorithms.

1 Introduction
Federated learning (FL) is emerging as a promising approach to enable scalable intelligence over
distributed settings such as mobile networks (Lim et al., 2020; Hard et al., 2018). Given the wide
adoption of FL, including medical analysis (Sheller et al., 2020; Adnan et al., 2022), recommen-
dation systems (Minto et al., 2021; Anelli1 et al., 2021), and personal Internet of Things (IoT)
devices (Alawadi et al., 2021), how to ensure the fairness of the trained global model in FL is of
great importance before its large-scale deployment, especially when the data quality/contributions
of different agents are different in the heterogeneous setting.

Several studies have explored fairness in FL, which mainly focus on the fairness of the final trained
model regarding the protected attributes without considering different contributions of agents (Chu
et al., 2021; Hu et al., 2022) or the accuracy parity across agents (Li et al., 2020b; Donahue & Klein-
berg, 2022a; Mohri et al., 2019). Some works have considered the properties of local agents, such as
the local data properties (Zhang et al., 2020; Kang et al., 2019) and data size (Donahue & Kleinberg,
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2022b). However, the fairness analysis in FL under heterogeneous data is still lacking. Thus, in
this paper, we aim to ask: What is the fairness of FL that is able to take different contributions of
heterogeneous local agents into account? Can we enhance the fairness of FL by providing advanced
training algorithms?

To better understand the fairness of FL under heterogeneous data, in this work, we aim to define
and enhance fairness by explicitly considering different contributions of heterogeneous agents. In
particular, for FL trained with standard FedAvg protocol (McMahan et al., 2017), if we denote the
data of agent e as De with size ne and the total number of data as n, the final trained global model
aims to minimize the loss with respect to the global distribution P =

∑E
e=1

ne

n De, where E is the
total number of agents. In practice, some local agents may have low-quality data (e.g., free riders),
so intuitively it is “unfair” to train the final model regarding such global distribution over all agents,
which will sacrifice the performance of agents with high-quality data. Thus, we define fairness via
agent-awareness in FL (FAA) as FAA({θe}e∈[E]) = maxe1,e2∈E

∣∣Ee1(θe1)−Ee2(θe2)
∣∣, measured

by the excess risk difference between any pair of agents e1, e2 ∈ E. The excess risk of each agent
is calculated as Ee(θe) = Le(θe) −minθ∗ Le(θ∗), which stands for the loss of user e evaluated on
the global model θ subtracted by the Bayes error of the local data distribution (Opper & Haussler,
1991). Lower FAA indicates stronger fairness for FL.

Based on our fairness definition FAA, we then propose a fair FL algorithm based on agent clus-
tering (FOCUS) to improve the fairness of FL. Specifically, we first cluster the local agents based
on their data distributions and then train a model for each cluster. During inference time, the final
prediction will be the weighted aggregation over the prediction result of each model trained with the
corresponding clustered local data. Theoretically, we prove that the final converged stationary point
of FOCUS is exponentially close to the optimal cluster assignment under mild conditions. In addi-
tion, we prove that the fairness of FOCUS in terms of FAA is strictly higher than that of the standard
FedAvg under both linear models and general convex losses. Empirically, we evaluate FOCUS on
four datasets, including synthetic data, images, and texts, and we show that FOCUS achieves higher
fairness measured by FAA than FedAvg and SOTA fair FL algorithms while maintaining similar or
even higher prediction accuracy.
Technical contributions. In this work, we define and improve FL fairness in heterogeneous settings
by considering different contributions of heterogeneous local agents. We make contributions on
theoretical and empirical fronts.
• We formally define fairness via agent-awareness (FAA) in FL based on agent-level excess risks to

measure fairness in FL, and explicitly take the heterogeneity nature of local agents into account.
• We propose a fair FL algorithm via agent clustering (FOCUS) to improve fairness measured by

FAA, especially in the heterogeneous setting. We prove the convergence rate and optimality of
FOCUS under linear models and general convex losses.

• We prove that FOCUS achieves stronger fairness measured by FAA compared with FedAvg for
both linear models and general convex losses.

• Empirically, we compare FOCUS with FedAvg and SOTA fair FL algorithms on four datasets,
including synthetic data, images, and texts under heterogeneous settings. We show that FOCUS
indeed achieves stronger fairness measured by FAA while maintaining similar or even higher
prediction accuracy on all datasets.

2 Related work

Fair Federated Learning There have been several studies exploring fairness in FL. Li et al.
(2020b) first define agent-level fairness by considering accuracy equity across agents and achieve
fairness by assigning the agents with worse performance with higher aggregation weight during
training. However, such a definition of fairness fails to capture the heterogeneous nature of local
agents. Mohri et al. (2019) pursue accuracy parity by improving the performance of the worst-
performing agent. Wang et al. (2021) propose to mitigate conflict gradients from local agents to
enhance fairness. Zhang et al. (2020) predefine the agent contribution levels based on an oracle
assumption (e.g., data volume, data collection cost, etc.) for fairness optimization, which lacks
quantitative measurement metrics in practice. Xu et al. (2021) approximate the Shapely Value based
on gradient cosine similarity to evaluate agent contribution. However, Zhang et al. (2020) point out
that Shapely Value may discourage agents with rare data, especially under heterogeneous settings.
Here we provide an algorithm to quantitatively measure the contribution of local data based on each
agent’s excess risk, which will not be affected even if the agent is the minority.
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Clustered Federated Learning Clustered FL algorithms are initially designed for multitasking
and personalized federated learning, which assumes that agents can be naturally partitioned into
clusters (Ghosh et al., 2020; Xie et al., 2021; Sattler et al., 2021; Marfoq et al., 2021). Existing clus-
tering algorithms usually aim to assign each agent to a cluster that provides the lowest loss (Ghosh
et al., 2020), optimize the clustering center to be close to the local model (Xie et al., 2021), or cluster
agents with similar gradient updates (with respect to, e.g., cosine similarity (Sattler et al., 2021)) to
the same cluster. In addition to these hard clustering approaches (i.e., each agent only belongs to
one cluster), soft clustering has also been studied (Marfoq et al., 2021; Li et al., 2022; Ruan & Joe-
Wong, 2022; Stallmann & Wilbik, 2022), which enables the agents to benefit from multiple clusters.
However, none of these works considers the fairness of clustered FL and the potential implications,
and our work makes the first attempt to bridge them.

3 Fair Federated Learning on Heterogeneous Data
In this section, we first define our fairness via agent-awareness (FAA) in FL with heterogeneous data
and then introduce our fair FL based on the agent clustering (FOCUS) algorithm to achieve FAA.

3.1 Fairness via Agent-Awareness in FL (FAA) with Heterogeneous Data
Given a set of E agents participated in the FL training process, each agent e only has access to its
local dataset: De = {(xe, ye)}ne

i=1, which is sampled from a distribution Pe. The goal of standard
FedAvg training is to minimize the overall loss LE(θ) based on the local loss Le(θ) of each agent:

min
θ
LE(θ) =

∑
e∈[E]

|De|
n
Le(θ), Le(θ) = E(x,y)∈Pe

`(hθ(x), y). (1)

where `(·, ·) is a loss function given model prediction hθ(x) and label y (e.g., cross-entropy loss),
n =

∑
e∈[E] |De| represents the total number of training samples, and θ represents the parameter of

trained global model.

Intuitively, the performance of agents with high-quality data (e.g., clean or better generality) could
be severely compromised by the existence of large amounts of agents with low-quality data (e.g.,
noisy or lower generality) under FedAvg. To solve such a problem and characterize the distinctions
of local data distributions (contributions) among agents to ensure fairness, we propose fairness via
agent-awareness in FL (FAA) as below.
Definition 1 (Fairness via agent-awareness for FL (FAA)). Given a set of agents E in FL, the
overall fairness score among all agents is defined as the maximal difference of excess risks for any
pair of agents:

FAA({θe}e∈[E]) = max
e1,e2∈[E]

∣∣∣E(θe1)− Ee2(θe2)
∣∣∣. (2)

where θe is the local model for agent e ∈ [E]. The excess risk Ee(θe) for agent e given model θe
is defined as the difference between the population loss Le(θe) and the Bayes optimal error of the
corresponding data distribution, i.e.,

Ee(θe) = Le(θe)−min
θ∗
Le(θ∗), (3)

where θ∗ denotes any possible models.
Note that in FedAvg, each client uses the global model θ as its local model θe. Definition 1 repre-
sents a quantitative data-dependent measurement of agent-level fairness. Instead of forcing accuracy
equity among all agents regardless of their data distributions, we define agent-level fairness as the
equity of excess risks among agents, which takes the contributions of local data into account by
measuring their Bayes errors. For instance, when a local agent has low-quality data, although the
corresponding utility loss would be high, the Bayes error of such low-quality data is also high, and
thus the excess risk of the user is still low, enabling the agents with high-quality data to achieve low
utility loss for fairness. According to the definition, we note that lower FAA indicates stronger
fairness among agents.

3.2 Fair Federated Learning on Heterogeneous Data via Clustering (FOCUS)
Method Overview. To enhance the fairness of FL in terms of FAA, we provide an agent clustering-
based FL algorithm (FOCUS) by partitioning agents conditioned on their data distributions. The key
intuition is that grouping agents with similar data distributions together helps to improve fairness,
since it reduces the intra-cluster data heterogeneity. This principle has also been used for other
purposes, such as personalization (Marfoq et al., 2021). We will analyze the fairness achieved
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by FOCUS and compare it with standard FedAvg both theoretically (Section 4.2) and empirically
(Section 5).

Our FOCUS algorithm (Algorithm 1) leverages the Expectation-Maximization algorithm to perform
agent clustering. Define M as the number of clusters and E as the number of agents. The goal of
FOCUS is to simultaneously optimize the soft clustering labels Π and model weights W . Specif-
ically, Π = {πem}e∈[E],m∈[M ] are the dynamic soft clustering labels, representing the estimated
probability that agent e belongs to cluster m; W = {wm}m∈[M ] represent the model weights for M
data clusters. Given E agents with datasets D1, . . . , DE , our FOCUS algorithm follows a two-step
scheme that alternately optimizes Π and W .
E step. Expectation steps update the cluster labels Π given the current estimation of (Π,W ). At
k-th communication round, the server broadcasts the M cluster models to all agents. The agents
calculate the expected training loss E(x,y)∈De

`(x, y;w
(k)
m ) for each cluster model w(k)

m , m ∈ [M ],
and then update the soft clustering labels Π according to Eq. (8).
M step. The goal of M steps in Eq. (9) is to minimize a weighted sum of empirical losses for
all local agents. However, given distributed data, it is impossible to find its exact optimal solution
in practice. Thus, we specify a concrete protocol in Eq. (4) ∼ Eq. (6) to estimate the objective
in Eq. (9). At k-th communication round, for each cluster model w(k)

m received from server, each
agent e first initializes its local model θ(k)

em(0) as w(k)
m , and then updates the model using its own

dataset. To reduce communication costs, each agent is allowed to run SGD locally for T local steps
as shown in Eq. (5). After T local steps, each agent sends the updated models θ(k)

em(T ) back to the
central server, and the server aggregates the models of all agents by a weighted average based on the
soft clustering labels {πem}. We provide theoretical analysis for the convergence and optimality of
FOCUS considering these multiple local updates in Section 4.

Clients: θ
(k)

em(0) = w(k)
m . (4)

θ
(k)

em(t+1) = θ
(k)

em(t) − ηt∇
ne∑
i=1

`
(
h
θ
(k)
em(t)

(x(i)e ), y(i)e

)
, ∀t = 1, . . . , T − 1. (5)

Server: w(k+1)
m =

E∑
e=1

π
(k+1)
em θ

(k)

em(T )∑E
e′=1 π

(k+1)

e′m

. (6)

Inference. At inference time, each agent ensembles the M models by a weighted average on their
prediction probabilities, i.e., a agent e predicts

∑M
m=1 πemhwm

(x) for input x. Suppose a test
dataset Dtest

e is sampled from distribution Pe. The test loss can be calculated by

Ltest(W,Π) =
1

|Dtest
e |

∑
(x,y)∈Dtest

e

`
( M∑
m=1

πemhw(x), y
)

(7)

For unseen agents that do not participate in the training process, their clustering labels Π are un-
known. Therefore, an unseen agent e computes its one-shot clustering label π(1)

em,m ∈ [M ] according
to Eq. (8), and outputs predictions

∑M
m=1 π

(1)
emhwm(x) for the test sample x.

4 Theoretical Analysis of FOCUS
In this section, we first present the convergence and optimality guarantees of our FOCUS algorithm;
and then prove that it improves the fairness of FL regarding FAA. Our analysis considers linear
models and then extends to nonlinear models with smooth and strongly convex loss functions.
4.1 Convergence Analysis

Linear models. We first start with linear models for analysis simplicity. Suppose there are E
agents, each with a local dataset De = {(x(i)e , y

(i)
e )}ne

i=1, (e ∈ [E]) generated from a Gaussian dis-
tribution. Specifically, we assume each dataset De has a mean vector µe ∈ Rd, and (x

(i)
e , y

(i)
e ) is

generated by y(i)e = µTe x
(i)
e + ε

(i)
e , where x(i)

e is a random vector x(i)e ∼ N (0, δ2Id) and the label y(i)
e

is blurred by some random noise ε(i)e ∼ N (0, σ2). Each agent is asked to minimize the mean squared
error to estimate µe, so the empirical loss function for a local agent given dataset De is

Lemp(De;w) =
1

ne

ne∑
i=1

(wTx(i)e − y(i)e )2. (10)
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Algorithm 1 EM clustered federated learning algorithm
Input: Data D1, . . . , DE ; E remote agents and M learning models.

Initialize weights w(0)
m and π(0)

em = 1
M

for m ∈ [M ] and e ∈ [E].
for k = 0 to K − 1 do

for agent e ∈ [E] do
for model m ∈ [M ] do

E step:
π(k+1)
em ←

π
(k)
em exp

(
−E(x,y)∈De`(x, y;w

(k)
m )
)

∑M
m=1 π

(k)
em exp

(
−E(x,y)∈De`(x, y;w

(k)
m )
) (8)

end for
end for
for model m ∈ [M ] do

M step:
w(k+1)
m ← arg min

w

E∑
e=1

π(k+1)
em

ne∑
i=1

`
(
hw(x(i)e ), y(i)e

)
(9)

end for
end for
return model weights w(K)

m

We further make the following assumption about the heterogeneous agents.

Assumption 1 (Separable distributions). Suppose there are M predefined vectors {w∗1 , . . . , w∗M},
where for anym1,m2 ∈ [M ], ‖w∗m1

−w∗m2
‖2 ≥ R. A set of agentsE satisfy separable distributions

if they can be divided into M subsets S1, . . . , SM such that, for any agent e ∈ Sm, ‖µe − w∗m‖2 ≤
r < R

2 .
Assumption 1 guarantees that the heterogeneous local data distributions are separable so that an
optimal clustering solution exists, in which {w∗1 , . . . , w∗M} are the centers of clusters.

We next present Theorem 1 to demonstrate the linear convergence rate to the optimal cluster centers
for FOCUS. Detailed proofs can be found in Appendix A.1.
Theorem 1. Consider the agent set E satisfying separable distributions as assumption 1. Given
trained M models and ∀e,m, π(0)

em = 1
M . Under the natural initialization wm for each model

m ∈ [M ], which satisfies ∃∆0 > 0, ‖w(0)
m − w∗m‖2 ≤ minm′ 6=m ‖w(0)

m − w∗m′‖2 − 2(r + ∆0) and
|De| = O(d). If learning rate η ≤ min( 1

4δ2 ,
β√
K

), FOCUS converges by

π(K)
em ≥

1

1 + (M − 1) · exp(−2Rδ2∆0K)
, ∀e ∈ Sm (11)

E‖w(K)
m − w∗m‖22 ≤ (1− 2ηγmδ

2

M
)KT (‖w(0)

m − w∗m‖22 +A) + 2MTr +
Mδ2Eβ

2
√
K

O(T 3, σ2). (12)

where K is the total number of communication rounds; T is the number of local updates in each
communication round; γm = |Sm| is the number of agents in the m-th cluster, and

A =
2ET (M − 1)δ2

(1− 2ηδ2γm
M

)T − exp(−2Rδ2∆0)
(caused by initial inaccurate clustering). (13)

Proof sketch. To prove this theorem, we first consider E steps and M steps separately to derive corre-
sponding convergence lemmas (Lemmas 1 and 2). In E steps, the soft cluster labels πem increase for
all e ∈ Sm, as long as ‖w(k)

m −w∗m‖2 < ‖w
(k)
m′ −w∗m‖2,∀m′ 6= m. On the other hand, ‖w(k)

m −w∗m‖
is guaranteed to shrink linearly as long as πem is large enough for any e ∈ Sm. We then integrate
Lemmas 1 and 2 and prove Theorem 1 using an induction statement.

Remarks. Theorem 1 shows the convergence of parameters (Π,W ) to a near-optimal solution given
linear models. Eq. (11) implies that the agents will be correctly clustered since πem will converge
to 1 as the number of communication rounds K increases. In Eq. (12), the first term diminishes
exponentially, while the second term 2MTr reflects the intra-cluster distribution divergence r. The
last term originates from the data heterogeneity among clients across different clusters, the influence
of which is amplified by the number of local updates (O(T 3)), and it will also diminish to zero as the
number of communication roundsK goes to infinity. Our convergence analysis is conditioned on the
natural clustering initialization for model weights w(0)

m towards a corresponding cluster center w∗m,
which is standard in convergence analysis for a mixture of models (Yan et al., 2017; Balakrishnan
et al., 2017).
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Smooth and strongly convex loss functions. Next, we extend our analysis to a more general case
of non-linear models with L-smooth and µ-strongly convex loss function.
Assumption 2 (Smooth and strongly convex loss functions). The population loss functions Le(θ)
for each agent e is L-smooth, i.e., ‖∇2Le(θ)‖2 ≤ L. The loss functions are µ-strongly convex, if
the eigenvalues λ of the Hessian matrix∇2Le(θ) satisfy λmin(∇2Le(θ)) ≥ µ.

We further make an assumption similar to Assumption 1 following the similar philosophy.
Assumption 3 (Separable distributions). A set of agents E satisfy separable distributions if they
can be partitioned into M subsets S1, . . . , SM with w∗1 , ..., w

∗
M representing the center of each set

respectively, and the optimal parameter θ∗ of each local loss Le (i.e., θ∗e = arg minθ Le(θ)) satisfy
‖θ∗e − w∗m‖2 ≤ r (14)

In the meantime, agents from different subsets have different data distributions, such that
‖w∗m1

− w∗m2
‖2 ≥ R, ∀m1,m2 ∈ [M ],m1 6= m2. (15)

Theorem 2. Consider the agent set E satisfying separable distributions as assumption
3. Suppose loss functions have bounded variance for gradients on local datasets, i.e.,
E(x,y)∼De

[‖∇`(x, y; θ)−∇Le(θ)‖22] ≤ σ2, and the population losses are bounded, i.e., Le ≤
G,∀e ∈ [E]. If let π(0)

em = 1
M , ∃∆0 > 0, ‖w(0)

m − w∗m‖2 ≤
√
µR

√
µ+
√
L
− r − ∆0, and the learn-

ing rate of each agent η ≤ min( 1
2(µ+L) ,

β√
K

), FOCUS converges by

π(K)
em ≥

1

1 + (M − 1) exp(−µR∆0K)
, ∀e ∈ Sm (16)

E‖w(K)
m − w∗m‖22 ≤ (1− ηA)KT (‖w(0)

m − w∗m‖22 +B) +O(Tr) +
MEβO(T 3, σ

2

ne
)

√
K

(17)

where K is the total number of communication rounds; T is the number of local updates in each
communication round; γm = |Sm| is the number of agents in the m-th cluster, and

A =
2γm
M

µL

µ+ L︸ ︷︷ ︸
related to convergence rate

, B =
GMTE( 4L

µ
+ 6

µ(µ+L)
)

(1− ηA)T − exp(−µR∆0)︸ ︷︷ ︸
caused by the offset of initial clustering

. (18)

Proof sketch. We analyze the evolution of parameters (Π,W ) for E steps in Lemma 3 and M steps
in Lemma 4. Lemma 3 shows that the soft cluster labels πem increase for all e ∈ Sm in E steps as
long as ‖wm −w∗m‖2 <

√
µR

√
µ+
√
L
− r; whereas Lemma 4 guarantees that the model weights wm get

closer to the optimal solution w∗m in M steps. We combine Lemmas 3 and 4 by induction to prove
this theorem. Detailed proofs are deferred to Appendix A.2.3.
Remarks. Theorem 2 extends the convergence guarantee of (Π,W ) from linear models (Theorem 1)
to general models with smooth and convex loss functions. For any agent e that belongs to a cluster
m (e ∈ Sm), its soft cluster label πem converges to 1 based on Eq. (16), indicating the clustering
optimality. Meanwhile, the model weights W converge linearly to a near-optimal solution. The
error term O(Tr) in Eq. (17) is expected, since r represents the data divergence within each cluster
and w∗m denotes the center of each cluster. The last term in Eq. (17) implies a trade-off between
communication cost and convergence speed. Increasing T reduces communication cost by O( 1

T )
but at the expanse of slowing down the convergence.

4.2 Fairness Analysis

To theoretically show that FOCUS achieves stronger fairness in FL based on FAA, here we focus on
a simple yet representative case where all agents share similar distributions except one outlier agent.

Linear models. We first concretize such a scenario for linear models. Suppose we have E agents
learning weights for M linear models. Their local data De(e ∈ [E]) are generated by y

(i)
e =

µTe x
(i)
e − ε(i)e with x(i)e ∼ N (0, δ2Id) and ε(i)e ∼ N (0, σ2). E−1 agents learn from normal dataset with

ground truth vector µ1, . . . , µE−1 and ‖µe − µ∗‖2 ≤ r, while the E-th agent has an outlier data
distribution, with its the ground truth vector µE far away from other agents, i.e., ‖µE − µ∗‖2 ≥ R.

As stated in Theorem 1, the soft clustering labels and model weights (Π,W ) converge linearly to
the global optimum. Therefore, we analyze the fairness of FOCUS, assuming an optimal (Π,W ) is
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reached. We compare the FAA achieved by FOCUS and FedAvg to underscore how our algorithm
helps improve fairness for heterogeneous agents.
Theorem 3. When a single agent has an outlier distribution, the fairness FAA achieved by FOCUS
algorithm with two clusters M = 2 is

FAAfocus(W,Π) ≤ δ2r2. (19)

while the fairness FAA achieved by FedAvg is

FAAavg(W ) ≥ δ2
(R2(E − 2)− 2Rr

E
+ r2

)
= Ω(δ2R2). (20)

Proof sketch. According to Theorem 1, the agents e ∈ [E − 1] with similar distributions converge to
the same cluster, producing an aggregated model wm1 = (

∑E
e=1 µe)/(E − 1); while the outlier agent

is separated from normal agents and train another model wm2 on its own. The detailed proofs are
based on these observations and are deferred to Appendix B.1.

Remarks. When a single outlier exists, the fairness gap between Fedavg and FOCUS is shown by
Theorem 3.

FAAavg(W )−FAAfocus(W,Π) ≥ δ2
(R2(E − 2)− 2Rr

E

)
. (21)

As long as R > 2r
E−2 , FOCUS is guaranteed to achieve stronger fairness (i.e., lower FAA) than

FedAvg. Note that the outlier assumption only makes sense when E > 2 since one cannot tell which
agent is the outlier when E = 2. Also, we naturally assume R > 2r so that the two underlying
clusters are at least separable. Therefore, we conclude that FOCUS dominates than FedAvg in terms
of FAA. Here we only discuss the scenario of a single outlier agent for clarity, but similar conclusions
can be drawn for multiple underlying clusters and M > 2, as discussed in Appendix B.1.

Smooth and strongly convex loss functions. We generalize the fairness analysis to nonlinear
models with smooth and convex loss functions. To illustrate the superiority of our FOCUS al-
gorithms in terms of FAA fairness, we similarly consider training in the presence of an outlier
agent. Suppose we have E agents that learn weights for M models. We assume their popu-
lation loss functions are L-smooth, µ-strongly convex (as in Assumption 2) and bounded, i.e.,
Le(θ) ≤ G. E − 1 agents learn from similar data distributions, such that the total variation dis-
tance between the distributions of any two different agents i, j ∈ [E − 1] is no greater than r:
DTV (Pi,Pj) ≤ r. On the other hand, the E-th agent has an outlier data distribution, such that the
Bayes error LE(θ∗i ) − LE(θ∗E) ≥ R for any i ∈ [E − 1]. We claim that this assumption can be
reduced to a lower bound on H-divergence (Zhao et al., 2022) between distributions Pi and PE that
DH(Pi,PE) ≥ LR

4µ . (See proofs in Appendix B.3.)

Theorem 4. The fairness FAA achieved by FOCUS with two clusters M = 2 is

FAAfocus(W,Π) ≤ 2Gr

E − 1
(22)

while the fairness achieved by FedAvg is

FAAavg(W ) ≥
(E − 1

E
− L

µE2

)
R−

(
1 +

L(E − 1)

µE
− L2

µ2E

)
B − 2L

µE

√
B(R− L

µ
B) (23)

where B = 2Gr
E−1 .

Proof sketch. According to Theorem 2, agents with normal distributions would converge to the same
cluster and produce a model wm1

=
∑E−1
e=1 θ∗e/(E−1); while the outlier agent trains another model

wm2
on its own. We proof Theorem 4 based on these observations in Appendix B.2.

Remarks. Notably, when the outlier distribution is very different from the normal distribution,
such that R� Gr (which means B � R), we simplify Eq. (23) as

FAAavg(W ) ≥ (
E − 1

E
− L

µE2
)R. (24)

Note that FAAfocus(W,Π) ≤ B � R, so the fairness FAA achieved by FedAvg is always larger
(weaker) than that of FOCUS, as long as E ≥

√
L/µ, indicating the effectiveness of FOCUS.

5 Experimental Evaluation
We conduct extensive experiments on various heterogeneous data settings to evaluate the fairness
measured by FAA for FOCUS, FedAvg (McMahan et al., 2017), and two baseline fair FL algo-
rithms (i.e., q-FFL (Li et al., 2020b) and AFL (Mohri et al., 2019)). We show that FOCUS achieves
significantly higher fairness measured by FAA while maintaining similar or even higher accuracy.
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5.1 Experimental Setup

Data and Models. We carry out experiments on four different datasets with heterogeneous data
settings, ranging from synthetic data for linear models to images (rotated MNIST (Deng, 2012) and
rotated CIFAR (Krizhevsky, 2009)) to text data for sentiment classification on Yelp (Zhang et al.,
2015) and IMDb (Maas et al., 2011) datasets. We train a fully connected model consisting of two
linear layers with ReLU activations for MNIST, a ResNet 18 model (He et al., 2016) for CIFAR,
and a pre-trained BERT-base model (Devlin et al., 2019) for the text data. We refer the readers to
Appendix C for more implementation details.

Evaluation Metrics and Implementation Details. We consider three evaluation metrics: average
test accuracy, average test loss, and FAA for fairness. For FedAvg, we evaluate the trained global
model on each agent’s test data; for FOCUS, we train M models corresponding to M clusters, and
use the soft clustering labels Π = {πem}e∈[E],m∈[M ] to make aggregated predictions on each agent’s
test data. We also report the performance of the global model trained by existing fair FL algorithms
(i.e., q-FFL (Li et al., 2020b) and AFL (Mohri et al., 2019)) as well as existing state-of-the-art FL
algorithms in heterogeneous data settings (i.e., FedMA (Wang et al., 2020), Bayesian nonparametric
FL (Yurochkin et al., 2019) and FedProx (Li et al., 2020a) in Appendix C.2). We tune q for q-FFL
from {0.1, 1, 3, 5, 10} (see Appendix C.2 for all results) and use λ = 0.01 for AFL following (Li
et al., 2020a).

To evaluate FAA of different algorithms, we estimate the Bayes optimal loss minw Le(w) for each
local agent e. Specifically, we train a centralized model based on the subset of agents with similar
data distributions (i.e., the same ground-truth cluster) and use it as a surrogate to approximate the
Bayes optimum. We select the agent pair with the maximal difference of excess risks to measure
fairness in terms of FAA calculated following Definition 1.

5.2 Evaluation Results
Synthetic data for linear models. We first evaluate FOCUS on linear regression models with
synthetic datasets. We set up E = 10 agents with data sampled from Gaussian distributions. Each
agent e is assigned with a local dataset of De = {(x(i)e , y

(i)
e )}ne

i=1 generated by y(i)
e = µTe x

(i)
e + ε

(i)
e

with x(i)e ∼ N (0, Id) and ε(i)e ∼ N (0, σ2). We study the case considered in Section 4.2 where a single
agent has an outlier data distribution. We set the intra-cluster distance r = 0.01 and the inter-cluster
distance R = 1 in our experiment. Note that it is a regression task, so we mainly report the average
test loss instead of accuracy here. Table 1 shows that FOCUS achieves FAA of 0.001, which is much
lower than the FAA 0.958 achieved by FedAvg, 0.699 by q-FFL, and 0.780 by AFL.

Table 1: Comparison of FOCUS, FedAvg, and fair FL algorithms q-FFL and AFL, in terms of average test
accuracy (Avg Acc), average test loss (Avg Loss), and fairness FAA. FOCUS achieves the best fairness mea-
sured by FAA compared with all baselines. Lower FAA indicates stronger fairness. (The best number is bold
if it outperforms others by more than 0.005.)

FOCUS FedAvg q-FFL AFL

q = 0.1 q = 1 q = 10 λ = 0.01

Synthetic
Avg Loss 0.010 0.108 0.106 0.102 0.110 0.104
FAA 0.001 0.958 0.769 0.717 0.699 0.780

Rotated MNIST
Avg Acc 0.953 0.929 0.922 0.861 0.685 0.885
Avg Loss 0.152 0.246 0.269 0.489 1.084 0.429
FAA 0.094 0.363 0.388 0.612 0.253 0.220

Rotated CIFAR
Avg Acc 0.929 0.908 0.897 0.833 0.565 0.901
Avg Loss 0.217 0.262 0.306 0.704 1.263 0.324
FAA 0.365 0.537 0.661 0.542 0.421 0.514

Yelp/IMDb
Avg Acc 0.940 0.940 0.938 0.938 0.909 0.934
Avg Loss 0.174 0.236 0.188 0.179 0.264 0.187
FAA 0.047 0.098 0.052 0.051 0.070 0.049

Rotated MNIST and CIFAR. Following (Ghosh et al., 2020), we rotate the images MNIST and
CIFAR datasets with different degrees to create data heterogeneity among agents. Both datasets are
evenly split into 10 subsets for 10 agents. For MNIST, two subsets are rotated for 90 degrees, one
subset is rotated for 180 degrees, and the rest seven subsets are unchanged, yielding an FL setup
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Figure 1: The excess risk of different agents trained with FedAvg and FOCUS on MNIST (a) and Yelp/IMDb
text data (b). Ci denotes ith cluster.

with three ground-truth clusters. Similarly, for CIFAR, we rotate the images of 3 subsets for 180
degrees, thus creating two ground-truth clusters. From Table 1, we observe that FOCUS consistently
achieves higher average test accuracy, lower average test loss, and lower FAA than other methods on
both datasets. In addition, although existing fair FL algorithms q-FFL and AFL achieve lower FAA
scores than FedAvg, their average test accuracy drops significantly. This is mainly because these
fair algorithms are designed for performance parity via improving low-quality agents (i.e., agents
with high training loss), thus sacrificing the accuracy of high-quality agents. Notably, FOCUS both
improves the FAA fairness and preserves high test accuracy.

Next, we analyze the surrogate excess risk of every agent on MNIST in Fig. 1 (a). We ob-
serve that the global model trained by FedAvg obtains the highest test loss as 0.61 on the out-
lier cluster, which rotates 180 degrees (i.e., cluster C3), resulting in high excess risk for the 9th
agent. Moreover, the low-quality data of the outlier cluster affect the agents in the 1st clus-
ter via FedAvg training, which leads to a much higher excess risk than that of FOCUS. On the
other hand, FOCUS successfully identifies clusters of the outlier distributions, i.e., clusters 2
and 3, rendering models trained from the outlier clusters independent from the normal cluster 1.
As shown in Fig. 1, our FOCUS reduces the excess risks of all agents, especially for the out-
liers, on different datasets. This leads to strong fairness among agents in terms of FAA. Similar
trends are also observed in CIFAR, in which our FOCUS reduces the surrogate excess risk for

Table 2: Comparison of FOCUS and FedAvg with dif-
ferent numbers of outlier agents (k) in terms of average
test accuracy (Avg Acc) and fairness FAA.

Rotated MNIST Rotated CIFAR

k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

Avg Acc FOCUS 0.957 0.953 0.948 0.939 0.929 0.872
FedAvg 0.945 0.929 0.910 0.803 0.908 0.857

FAA FOCUS 0.159 0.094 0.153 1.739 0.365 1.403
FedAvg 0.515 0.363 0.476 3.456 0.537 1.848

the 9th agent from 2.74 to 0.44. We omit the
loss histogram of CIFAR to Appendix C.

Finally, we evaluate different numbers of out-
liers in Table 2. In the presence of 1, 3, and
5 outlier agents, forming 2, 3, or 4 underly-
ing true clusters, FOCUS consistently achieves
a lower FAA score and higher accuracy than
baseline FedAvg.

Sentiment classification. We evaluate FOCUS on the sentiment classification task with text data,
Yelp (restaurant reviews), and IMDb (movie reviews), which naturally form data heterogeneity
among 10 agents and thus create 2 clusters. Specifically, we sample 56k reviews from Yelp datasets
distributed among seven agents and use the whole 25k IMDB datasets distributed among three agents
to simulate the heterogeneous setting. From Table 1, we can see that while the average test accuracy
of FOCUS, FedAvg, and other fair FL algorithms are similar, FOCUS achieves a lower average test
loss. In addition, the FAA of FOCUS is significantly lower than other baselines, indicating stronger
fairness. We also observe from Fig. 1 (b) that the excess risk of FOCUS on the outlier cluster (i.e.,
C2) drops significantly compared with that of FedAvg.

6 Conclusion
In this work, we provide an agent-level fairness measurement in FL (FAA) by taking agents’ inherent
heterogeneous data properties into account. Motivated by our fairness definition in FL, we also
provide an effective FL training algorithm FOCUS to achieve high fairness. We theoretically analyze
the convergence rate and optimality of FOCUS, and we prove that under mild conditions FOCUS
is always fairer than the standard FedAvg protocol. We conduct thorough experiments on synthetic
data with linear models as well as image and text datasets on deep neural networks. We show that
FOCUS achieves stronger fairness than FedAvg and achieves similar or higher prediction accuracy
across all datasets. We believe our work will inspire new research efforts on exploring the suitable
fairness measurements for FL under different requirements.
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A Convergence Proof

A.1 Convergence of Linear Models (Theorem 1)

A.1.1 Key Lemmas

We need to state two lemmas first before proving Theorem 1.

Lemma 1. Suppose e ∈ Sm and the m-th cluster is the one closest to w∗m. Assume ‖w(k)
m −w∗m‖ ≤

α < β ≤ minm′ 6=m ‖w(k)
m′ − w∗m‖. Then the E-step updates as

π(k+1)
em ≥ π

(k)
em

π
(k)
em + (1− π(k)

em) exp
(
− (β2 − α2 − 2(α+ β)r)δ2

) (25)

Remark. Our assumption of proper initialization guarantees that ‖w(0)
m −w∗m‖ ≤ α while ∀m′, we

have ‖wm′ − w∗m‖2 ≥ ‖w∗m − µ∗m′‖ − ‖wm′ − µ∗m′‖ = R − α. Hence, we substitute β = R − α
and α = R

2 − r −∆, which yields

π(k+1)
em ≥ π

(k)
em

π
(k)
em + (1− π(k)

em) exp(−2R∆δ2)
, ∀e ∈ Sm (26)

For M-steps, the local agents are initialized with θ(0)
em = w

(k)
m . Then for t = 1, . . . , T −1, each agent

use local SGD to update its personal model:

θ(t+1)
em = θem − ηtgem(θem) = θ(t)

em − ηt∇
ne∑
i=1

`(hθem(x(i)
e ), y(i)

e ). (27)

To analyze the aggregated model Eq. (6), we define a sequence of virtual aggregated models ŵ(t)
m .

ŵ(t)
m =

E∑
e=1

πemθ
(t)
em∑E

e′=1 πe′m
. (28)

Lemma 2. Suppose any agent e ∈ Sm has a soft clustering label π(k+1)
em ≥ p. Then one step of

local SGD updates ŵ(t)
m by Eq. (29), if the learning rate ηt ≤ 1

4δ2 .

E‖ŵ(t+1)
m − w∗m‖22 ≤ (1− 2ηtγmpδ

2)E‖ŵ(t+1)
m − w∗m‖22 + ηtA1 + η2

tA2. (29)

A1 = 4γmrδ
2 + 2δ2E(1− p), A2 = 16E(T − 1)2δ4 +O(

d

ne
)E(δ4 + δ2σ2) (30)

Remark. Using the recursive relation in Lemma 2, if the learning rate ηt is fixed, the sequence ŵ(t)
m

has a convergence rate of
E‖ŵ(t)

m − w∗m‖22 ≤ (1− 2ηγmpδ
2)tE‖ŵ(0)

m − w∗m‖22 + ηt(A1 + ηA2). (31)
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A.1.2 Completing the Proof of Theorem 1

We now combine Lemma 1 and Lemma 2 to prove Theorem 1. The theorem is restated below.

Theorem 1. With the assumptions 1 and 2, ne = O(d), if learning rate η ≤ min( 1
4δ2 ,

β√
K

),

π(K)
em ≥

1

1 + (M − 1) · exp(−2Rδ2∆0K)
, ∀e ∈ Sm (32)

E‖w(K)
m − w∗m‖22 ≤ (1− 2ηγmδ

2

M
)KT (‖w(0)

m − w∗m‖22 +A) + 2MTr +
Mδ2Eβ

2
√
K

O(T 3, σ2). (33)

where K is the total number of communication rounds; T is the number of iterations each round;
γm = |Sm| is the number of agents in the m-th cluster, and

A =
2ET (M − 1)δ2

(1− 2ηδ2γm
M

)T − exp(−2Rδ2∆0)
. (34)

Proof. We prove Theorem 1 by induction. Suppose

π(k)
em ≥

1

1 + (M − 1) exp(−2Rδ2∆0k)
(35)

E‖w(k)
m − w∗m‖2 ≤ (1− 2ηγmδ

2

M
)kT (‖w(0)

m − w∗m‖2) +A
(

(1− 2ηγmδ
2

M
)kT − exp

(
−2Rδ2∆0k

))
+

ηB

1− (1− 2ηγmδ2

M )T
. (36)

where B = [16Eδ4T 3 + ET (δ4 + δ2σ2)]η + 4γmrδ
2T.

Then according to Lemma 1,

π(k+1)
em ≥ π

(k)
em

π
(k)
em + (1− π(k)

em) exp(−2R∆0δ2)
(37)

≥ 1

1 + (M − 1) exp(−2Rδ2∆0n) exp(−2R∆0δ2)
(38)

≥ 1

1 + (M − 1) exp(−2R∆0δ2(k + 1))
. (39)

We recall the virtual sequence of ŵm defined by Eq. (28). Since models are synchronized after T
rounds, the know ŵ

(0)
m = w

(k)
m and w(k+1)

m = ŵ
(T )
m . We then apply Lemma 2 to prove the induction.

Note that instead of proving Eq. (33), we prove a stronger induction hypothesis of Eq. (36).

E‖w(k+1)
m − w∗m‖2

= E‖ŵ(T )
m − w∗m‖2 (40)

≤ (1− 2ηγmpδ
2)TE‖ŵ(k)

m − w∗m‖2 + ηT (A1 + ηA2) (41)

≤ (1− 2ηγmpδ
2)T
(

(1− 2ηγmδ
2

M
)kT ‖w(0)

m − w∗m‖2 +A((1− 2ηγmδ
2

M
)kT − exp

(
−2R∆0δ

2k
)
)

+
ηB

1− (1− 2ηγmδ2

M )T

)
+ ηT (4γmrδ

2 + 2δ2E(1− p)) + η2TA2 (42)

≤ (1− 2ηγmδ
2

M
)(k+1)T ‖w(0)

m − w∗m‖2

+A(1− 2ηγmδ
2

M
)(k+1)T −A exp

(
−2R∆0δ

2k
)
(1− 2ηγmδ

2

M
)T + 2δ2E(1− p)︸ ︷︷ ︸

D1

+ (1− 2ηγmδ
2

M
)T

ηB

1− (1− 2ηγmδ2

M )T
+ 4ηTγmrδ

2 + η2TA2︸ ︷︷ ︸
D2

. (43)
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Note that 1− p ≤ (M − 1) exp
(
−2R∆0δ

2k
)
, so

D1 ≤ A(1− 2ηγmδ
2

M
)(k+1)T −A exp

(
−2R∆0δ

2k
)
(1− 2ηγmδ

2

M
)T + 2δ2ET (M − 1) exp

(
−2R∆0δ

2k
)

≤ A((1− 2ηγmδ
2

M
)(k+1)T − exp

(
−2R∆0δ

2(k + 1)
)
) (44)

For D2 we have

D2 ≤ (1− 2ηγmδ
2

M
)T

ηB

[1− (1− 2ηγmδ2

M )T ]
+ 4ηγmrδ

2T + 16η2Eδ4T 3 + η2ETO(δ4 + δ2σ2)

=
ηB

1− (1− 2ηγmδ2

M )T
. (45)

Finally we combine Eqs. (43) to (45) so

E‖w(k+1)
m − w∗m‖2 ≤ (1− 2ηγmδ

2

M
)(k+1)T ‖w(0)

m − w∗m‖2 +A
(

(1− 2ηγmδ
2

M
)(k+1)T − exp

(
−2Rδ2∆0(k + 1)

))
+

ηB

1− (1− 2ηγmδ2

M
)T
. (46)

Since it is trivial to check that both induction hypotheses hold when k = 0, the induction hypothesis
holds. Note that T ≥ 1, so

ηB

1− (1− 2ηγmδ2

M )T
≤ ηB M

2ηγmδ2
≤ 2MTr +

Mδ2Eβ

2
√
K

O(T 3, δ2). (47)

Combining Eq. (46) and Eq. (47) completes our proof.

A.1.3 Deferred Proofs of Key Lemmas

Lemma 1.

Proof. For simplicity, we abbreviate the model weights w(k)
m by wm in the proof of this lemma. The

n-th E step updates the weights Π by

π(k+1)
em =

π
(k)
em exp

[
−E(x,y)∼De

(wm
Tx− y)2

]∑
m′ π

(k)
em′ exp

[
−E(x,y)∼De

(wm′Tx− y)2
] (48)

so

π(k+1)
em =

π
(k)
em exp

(
−‖wm − µt‖2δ2

)∑
m′ π

(k)
em′ exp[−‖w′m − µt‖2δ2]

(49)

≥
π

(k)
em exp

(
−(β − r)2δ2

)
π

(k)
em exp(−(β − r)2δ2) +

∑
m′ 6=m π

(k)
em′ exp(−(α+ r)2δ2)

(50)

≥ π
(k)
em

π
(k)
em + (1− π(k)

em) exp
(
− (β2 − α2 − 2(α+ β)r)δ2

) (51)

Lemma 2.

Proof. Notice that local datasets are generated by Xe ∼ N (0, δ21ne×d) and ye = Xeµe + εe with
εe ∼ N (0, σ2). Therefore,

14



‖ŵ(t+1)
m − w∗m‖2 = ‖w(t)

m − w∗m − ηtgt‖2 (52)

= ‖ŵ(t)
m − w∗m − ηt

2

ne

∑
e

πemX
T
e Xe(θ

(t)
em − µe) +

2ηt
ne

∑
e

πemX
T
e εe‖2 (53)

= ‖ŵt − w∗m − ĝt‖2 + η2
t ‖gt − ĝt‖2 + 2ηt〈wt − w∗m − ĝt, ĝt − gt〉. (54)

where ĝt = 2
ne

∑
e πemE(XT

e Xe)(θ
(t)
em − µ). Since the expectation of the last term in Eq. (54) is

zero, we only need to estimate the expectation of ‖ŵ(t)
m − w∗m − ηtĝt‖2 and ‖ĝt − gt‖2.

‖ŵ(t)
m − w∗m − ηtĝt‖2

= ‖ŵ(t)
m − w∗m‖2 +

4η2
t

n2
e

∑
e

πemE(XT
e Xe)‖θtem − µe‖2 −

4ηt
ne

∑
e

πem〈ŵ(t)
m − w∗m,E(XT

e Xe)(θ
(t)
em − µe)〉

= ‖ŵ(t)
m − w∗m‖2 + 4η2

t δ
2
∑
e

πem‖θ(t)
em − µe‖2 − 4ηt〈ŵ(t)

m − w∗m,
∑
e

πemδ
2(θ(t)

em − µe)〉︸ ︷︷ ︸
C1

.

(55)

C1 = −4ηt
∑
e

πem〈ŵ(t)
m − θ(t)

em, δ
2(θ(t)

em − µe)〉 − 4ηt
∑
e

πem〈θ(t)
em − w∗m, δ2(θ(t)

em − µe)〉 (56)

≤ 4
∑
e

πem‖ŵ(t)
m − θ(t)

em‖2 + 4δ4η2
t

∑
e

πem‖θ(t)
em − µe‖2 − 4ηtδ

2
∑
e

πem‖θ(t)
em − µe‖2

− 4ηtδ
2
∑
e

πem〈µe − w∗m, θ(t)
em − µe〉︸ ︷︷ ︸

C2

(57)

Since ηt ≤ 1
4δ2 ,

E‖ŵ(t)
m − w∗m − ηtĝt‖2 (58)

≤ E‖ŵ(t)
m − w∗m‖2 + (8δ4η2

t − 4ηtδ
2)
∑
e

πemE‖θ(t)
em − µe‖2 + 4

∑
e

πemE‖ŵ(t)
m − θ(t)

em‖2 + C2

(59)

≤ E‖ŵ(t)
m − w∗m‖2 − 2ηtδ

2
∑
e

πemE‖θ(t)
em − µe‖2 + 4

∑
e

πemE‖ŵ(t)
m − θ(t)

em‖2 + C2 (60)

Note that∑
e

πemE‖θ(t)
em − µe‖2 (61)

=
∑
e∈Sm

πemE‖θ(t)
em − µe‖2 +

∑
e 6∈Sm

πemE‖θ(t)
em − µe‖2 (62)

≥
∑
e∈Sm

πem(E‖θ(t)
em − w∗m‖2 + 2r + r2) +

∑
e 6∈Sm

πemE‖θ(t)
em − µe‖2 (63)

=
∑
e∈Sm

πem(E‖ŵ(t)
m − w∗m‖2 + E‖ŵ(t)

m − θ(t)
em‖2 + 2r + r2) +

∑
e 6∈Sm

πemE‖θ(t)
em − µe‖2 (64)
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And since ŵ(t)
m = E

∑
e πemθ

(t)
em, we have

4E
∑
e

πem‖ŵ(t)
m − θ(t)

em‖2 ≤ 4E
∑
e

πem‖ŵ(0)
m − θ(t)

em‖2 (65)

≤ 4
∑
e

πem(T − 1)E
t−1∑
t′

η′t
2‖ 2

ne
XT
e Xe(θ

(t)
em − µe)‖2 (66)

≤ 16η2
tE(T − 1)2δ4. (67)

Thus,

E‖ŵ(t)
m − w∗m − ηtĝt‖2 ≤ (1− 2ηtδ

2
∑
e

πem)E‖ŵ(t)
m − w∗m‖2 + 16η2

tE(T − 1)2δ4

−2ηtδ
2
∑
e 6∈Sm

πemE‖θ(t)
em − µe‖2 − 4ηtδ

2
∑
e

πem〈θ(t)
em − µe, µe − w∗m〉︸ ︷︷ ︸

C3

(68)

Since

C3 ≤ 2ηtδ
2
∑
e 6∈Sm

πem‖µe − w∗m‖22 − 4ηtδ
2
∑
e∈Sm

πem‖θ(t)
em − µe‖2‖µe − w∗m‖2 (69)

≤ 2ηtδ
2E(1− p) + 4ηtδ

2γmr (70)

we have

E‖ŵ(t)
m −w∗m−ηtĝt‖2 ≤ (2ηtδ

2γmp)E‖ŵ(t)
m −w∗m‖2+16η2

tE(T−1)2δ4+2ηtδ
2E(1−p)+4ηtδ

2γmr
(71)

Notice that

E‖ĝt − gt‖2 = E
∑
e

4

n2
e

πem‖(XT
e Xe − E(XT

e Xe))(θ
(t)
em − µe)‖2 + E

∑
e

4

n2
e

∑
e

πem‖XT
e εe‖2

= E
O(dne)

n2
e

δ4 + E
O(dne)

n2
e

δ2σ2 (72)

so
E‖ŵ(t+1)

m − w∗m‖22 ≤ (1− 2ηtγmpδ
2)E‖ŵ(t)

m − w∗m‖22 + ηtA1 + η2
tA2 (73)

where
A1 = 4δ2γmr + 2δ2E(1− p) (74)

and
A2 = 16E(T − 1)2δ4 +O(

d

ne
)E(δ4 + δ2σ2). (75)

A.2 Convergence of Models with Smooth and Strongly Convex Losses (Theorem 2)

Here we present the detailed proof for Theorem 2.

A.2.1 Key Lemmas

We first state two lemmas for E-step updates and M-step updates, respectively. The proofs of both
lemmas are deferred to the Appendix A.2.3
Lemma 3. Suppose the loss function LPt(θ) is L-smooth and µ-strongly convex for any cluster m.
If ‖w(k)

m − w∗m‖ ≤
√
µR

√
µ+
√
L
− r −∆ for some ∆ > 0, then E-step updates as

π(k)
em ≥

π
(k)
em

π
(k)
em + (1− π(k)

em) exp(−µR∆)
. (76)
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For M-steps, the local agents are initialized with θ(0)
em = w

(k)
m . Then for t = 1, . . . , T −1, each agent

use local SGD to update its personal model:

θ(t+1)
em = θem − ηtgem(θem) = θ(t)

em − ηt∇
ne∑
i=1

`(hθem(x(i)
e ), y(i)

e ). (77)

To analyze the aggregated model Eq. (6), we define a sequence of virtual aggregated models ŵ(t)
m .

ŵ(t)
m =

E∑
e=1

πemθ
(t)
em∑E

e′=1 πe′m
. (78)

Lemma 4. Suppose for any agent e ∈ Sm, its soft clustering label π(k+1)
em ≥ p. Then one step local

SGD updates ŵ(t)
m by Eq. (79), if the learning rate ηt ≤ 1

2(µ+L) .

E‖ŵ(t+1)
m − w∗m‖22 ≤ (1− ηtA0)E‖ŵ(t)

m − w∗m‖22 + ηtA1 + η2
tA2. (79)

where

A0 =
2γmpµL

µ+ L
(80)

A1 = 2γmLr

√
2G

µ
+
G(1− p)E

µ
(4L+

6

µ+ L
) +O(r2). (81)

A2 =
4E(T − 1)2GL2

µ
+
Eσ2

ne
. (82)

Remark. Using this recursive relation, if the learning rate ηt is fixed, the sequence ŵ(t+1)
m has a

convergence rate of

E‖ŵ(t)
m − w∗m‖2 ≤ (1− ηA0)tE‖ŵ(0)

m − w∗m‖2 + ηt(A1 + ηA2). (83)

A.2.2 Completing the Proof of Theorem 2

Theorem 2. Suppose loss functions have bounded variance for gradients on local datasets, i.e.,
E(x,y)∼De

[‖∇`(x, y; θ)−∇Le(θ)‖22] ≤ σ2. Assume population losses are bounded, i.e., Le ∈
G,∀e ∈ [E]. With initialization from assumptions 3 and 4, if each agent chooses learning rate
η ≤ min( 1

2(µ+L) ,
β√
K

), the weights (Π,W ) converges by

π(K)
em ≥

1

1 + (M − 1) exp(−µR∆0K)
, ∀e ∈ Sm (84)

E‖w(K)
m − w∗m‖22 ≤ (1− ηA)KT (‖w(0)

m − w∗m‖22 +B) +O(Tr) +
MEβO(T 3, σ

2

ne
)

√
K

(85)

where K is the total number of communication rounds; T is the number of iterations each round;
γm = |Sm| is the number of agents in the m-th cluster, and

A =
2γm
M

µL

µ+ L
,B =

GMTE( 4L
µ

+ 6
µ(µ+L)

)

(1− ηA)T − exp(−µR∆0)
. (86)

Proof. The proof is quite similar to Theorem 1 for linear models: we follow an induction proof
using lemmas 3 and 4. Suppose Eq. (84) hold for step k. And suppose

E‖w(k)
m −w∗m‖22 ≤ (1−ηA)kT (‖w(0)

m −w∗m‖22)+B((1−ηA)kT−exp(−µR∆0k))+
ηC

1− (1− ηA)T
. (87)

where

C =
4ηEGT 3L2

µ
+ (2γmLr

√
2G

µ
+O(r2)) + η

ETσ2

ne
. (88)
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Then for any t ∈ Sm,

π(k+1)
em ≥ π

(k)
em

π
(k)
em + (1− π(k)

em) exp(−µR∆k)
(89)

≥ 1

1 + (M − 1) exp(−µR∆0k) exp(−µR∆k)
(90)

≥ 1

1 + (M − 1) exp(−µR∆0(k + 1))
(91)

We recall the virtual sequence ŵ(t)
m defined in Eq. (78). Models are synchronized after T rounds of

local iterations, so w(k+1)
m = ŵ

(T )
m . Thus, according to Lemma 4,

E‖w(k+1)
m − w∗m‖22 = E‖ŵ(T )

m − w∗m‖22 (92)

≤ (1− ηA0)TE‖w(k)
m − w∗m‖22 + ηT (A1 + ηA2) (93)

≤ (1− ηA0)T
(

(1− ηA)kT (E‖w(0)
m − w∗m‖2) +B((1− ηA)kT − exp(−µR∆0k)) +

ηC

1− (1− ηA)T

)
+ ηT (A1 + ηA2)

(94)

≤ (1− ηA)(k+1)TE‖w(0)
m − w∗m‖2 + (1− ηA)TB

(
(1− ηA)kT − exp(−µR∆0k)

)
+ η

GT (1− p)E
µ

(4L+
6

µ+ L
)︸ ︷︷ ︸

F1

+ (1− ηA)T
ηC

1− (1− ηA)T
+ ηT (2γmLr

√
2G

µ
+O(r2)) + η2TA2︸ ︷︷ ︸

F2

. (95)

For F1, we use the fact that

π(k+1)
em ≥ 1

1 + (M − 1) exp−(µR∆0(k + 1))
≥ 1− (M − 1) exp(−µR∆(N − 1)),

so

F1 ≤ (1− ηA)TB
(
(1− ηA)kT − exp(−µR∆0n)

)
+ η

G(M − 1) exp(−µR∆0n)

µ
(4L+

6

µ+ L
)

(96)

= B
(

(1− ηA)(k+1)T − exp(−µR∆0n)
)

(97)

For F2, we have

F2 ≤ (1− ηA)T
ηC

1− (1− ηA)T
+ ηT (2γmLr

√
2G

µ
+O(r2)) +

4EGL2η2T 3

µ
+
η2TEσ2

ne
(98)

≤ ηC

1− (1− ηA)T
. (99)

Combining F1 and F2 finishes the induction proof. Moreover, since T ≥ 1, we have

ηC

1− (1− ηA)T
≤ C

A
= O(Tr) +

MEβ√
K

O(T 3,
σ2

ne
). (100)

Combining Eq. (87) and Eq. (100) completes our proof.

A.2.3 Deferred Proofs of Key Lemmas

Lemma 3.
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Proof. According to Algorithm 1,

π(k+1)
em =

π
(k)
em

π
(k)
em +

∑
m′ 6=m π

(k)
em′ exp

(
E`(x, y;wnm)− E`(x, y;wnm′)

) (101)

≥ π
(k)
em

π
(k)
em + (1− π(k)

em) exp
(

maxm′ 6=m(LPt
(w

(k)
m )− LPt

(w
(k)
m′ ))

) (102)

Since LPt is L-smooth and µ-strongly convex,

LPt
(w(k)

m )− LPt
(w

(k)
m′ ) ≤

L

2
‖w(k)

m − θ∗t ‖2 −
µ

2
‖w(k)

m′ − θ
∗
t ‖2

≤ L

2
(

√
µR

√
µ+
√
L
−∆)2 − µ

2
(

√
LR

√
µ+
√
L

+ ∆)2

≤ −
√
µLR∆ +

L− µ
2

∆2 ≤ −µR∆. (103)

Combining Eq. (102) and Eq. (103) completes our proof.

Lemma 4.

Proof. We define g(t)
m =

∑
e πem

1
ne

∑ne

i=1∇`(hθem(x
(i)
e ), y

(i)
e ) and ĝ(t)

m =
∑
e πem∇L(θ

(t)
em).

E‖ŵ(t+1)
m − w∗m‖2 = E‖ŵ(t)

m − w∗m − ηtgm‖2 (104)

= E‖ŵ(t)
m − w∗m − ηtĝ(t)

m ‖2 + η2
tE‖g(t)

m − ĝ(t)
m ‖2

+ 2ηtE〈w(t)
m − w∗m − ηtĝ(t)

m , ĝ(t)
m − g(t)

m 〉 (105)

= E‖ŵ(t)
m − w∗m − ηtĝ(t)

m ‖2 + η2
tE‖g(t)

m − ĝ(t)
m ‖2. (106)

The first term can be decomposed into

‖ŵ(t)
m − w∗m − ηtĝ(t)

m ‖2 = ‖ŵ(t)
m − w∗m‖2 + η2

t ‖ĝ(t)
m ‖2 − 2ηt〈ŵ(t)

m − w∗m, ĝ(t)
m 〉. (107)

Note that

‖ĝ(t)
m ‖2 ≤

E∑
e=1

πem‖∇Le(θ(t)
em)‖2. (108)

− 〈ŵ(t)
m − w∗m, ĝ(t)

m 〉 = −
E∑
e=1

πem〈ŵ(t)
m − θem(t),∇Le(θ(t)

em)〉 −
E∑
e=1

πem〈θ(t)
em − w∗m,∇Le(θ(t)

em)〉.

(109)

We further decompose the two terms in Eq. (109) by

− 2〈ŵ(t)
m − θ(t)

em,∇Le(θ(t)
em)〉 ≤ 1

ηt
‖ŵ(t)

m − θ(t)
em‖2 + ηt‖∇Le(θ(t)

em)‖2. (110)

and

〈θ(t)
em − w∗m,∇Le(θ(t)

em)〉 ≥ 〈θ(t)
em − w∗m,∇Le(θ(t)

em)−∇Le(w∗m)〉+ ‖∇Le(w∗m)‖2‖θ(t)
em − w∗m‖2.

(111)

≥ µL

µ+ L
‖θ(t)
em − w∗m‖2 +

1

µ+ L
‖∇Le(θ(t)

em −∇Le(w∗m))‖2 + ‖∇Le(w∗m)‖2‖θ(t)
em − w∗m‖2.

(112)
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Therefore,

E‖ŵ(t+1)
m − w∗m‖2 = E‖ŵt − w∗m‖2 − 2ηt

µL

µ+ L

∑
e

πemE‖θ(t)
em − w∗m‖2︸ ︷︷ ︸

E1

+
∑
e

πemE‖ŵ(t)
m − θ(t)

em‖2︸ ︷︷ ︸
E2

+
(

2η2
t

∑
e

πemE‖∇Le(θ(t)
em)‖2 − 2ηt

1

µ+ L

∑
e

πemE‖∇Le(θ(t)
em)−∇Le(w∗m)‖2

)
︸ ︷︷ ︸

E3

+ 2ηtE
∑
e

πem‖θ(t)
em − w∗m‖2 · ‖∇Le(w∗m)‖2︸ ︷︷ ︸

E4

+ η2
tE‖g(t)

m − ĝ(t)
m ‖2︸ ︷︷ ︸

E5

.

(113)

E1 = E‖ŵt − w∗m‖2 − 2ηt
µL

µ+ L
E
(∑

e

πem‖ŵ(t)
m − w∗m‖2 +

∑
e

πem‖ŵ(t)
m − θ(t)

em‖2
)

≤ (1− 2ηtµLpγm
µ+ L

)E‖w(t)
m − w∗m‖2 + E2. (114)

E2 = E
∑
e

πem‖ŵ(t)
m − θ(t)

em‖2

= E
∑
e

πem‖(w(0)
m − θ(t)

em) + (θ(t)
em − w(t)

m )‖2

≤ E
∑
e

πem‖(w(0)
m − θ(t)

em)‖2

≤
∑
e

πem(T − 1)E
t−1∑
t′=0

ηt′
2‖gem(θ(t′)

em )‖2

≤ 2η2
tE(T − 1)2G2L2

µ
. (115)

E3 = 2E
∑
e

πem

(
(η2
t −

ηt
µ+ L

)‖∇Le(θ(t)
em)‖2 +

2ηt
µ+ L

〈∇Le(θ(t)
em),∇Le(w∗m)〉 − ηt

‖∇Le(w∗m)‖2

µ+ L

)
≤ 2ηtE

∑
e

πem

( 1

2(µ+ L)
‖∇Le(θ(t)

em)‖2 +
1

µ+ L
〈∇Le(θ(t)

em),∇Le(w∗m)〉 − ‖∇Le(θ
(t)
em)‖2

µ+ L

)
≤ 6ηtE

‖∇Le(w∗m)‖2

µ+ L

≤ 6ηt
∑
e∈Sm

πem
L2r2

µ+ L
+ 6ηt

∑
e 6∈Sm

πem
2G

µ(µ+ L)

≤ ηtO(r2) + 6ηt
G(1− p)E
µ(µ+ L)

. (116)

E4 = 2ηtE
∑
e∈Sm

πem‖θ(t)
em − w∗m‖2 · ‖∇Le(w∗m)‖2 + 2ηtE

∑
e 6∈Sm

πem‖θ(t)
em − w∗m‖2 · ‖∇Le(w∗m)‖2

≤ 2ηtγmLr

√
2G

µ
+ 2ηt(1− p)EL ·

2G

µ
. (117)
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E5 = η2
tE‖g(t)

m − ĝ(t)
m ‖2

≤ η2
tE
∥∥∥∑

e

πem

( 1

ne

ne∑
i=1

∇`(hθem(x(i)
e ), y(i)

e )− L(θ(t)
em)
)∥∥∥2

≤ η2
tE

σ2

ne
. (118)

Combining Eq. (114) to Eq. (118) yields the conclusion of Lemma 4.

B Fairness Analysis

B.1 Proof of Theorem 3

Proof. Let the first cluster m1 contain agents µ1, . . . , µE−1, while the second cluster contains only
the outlier µE . Then, for e = 1, . . . , E − 1,

Ee(wm1) = δ2

∥∥∥∥∥µe −
∑E−1
e′=1 µe′

E − 1

∥∥∥∥∥
2

≤ δ2r2 (119)

And for the outlier agent, the expected output is just the optimal solution, so

EE(wm2
) = 0 (120)

As a result, the fairness of this algorithm is bounded by

FAAfocus(P ) = max
i,j∈[E]

|Ei(Π,W )− Ej(Π,W )| ≤ δ2r2. (121)

On the other hand, the expected final weights of of FedAvg algorithm is wavg = µ̄ =
∑E

e=1 µe

E , so
the expected loss for agent e shall be

E(x,y)∼Pe
(`θ̂(x)) = Ex∼N (0,δ2Id),ε∼N (0,σ2)[(µ

T
i x+ ε− µ̄Tx)2] = σ2 + δ2‖µe − µ̄‖2 (122)

The infimum risk for agent t1 is σ2
1 , and after subtracting it from the expected loss, we have

E1(wavg) = δ2‖µ1 − µ̄‖2

= δ2‖µ1 −
∑E−1
e=1 µ1

E
− µE

E
‖2

≤ δ2
(
r · E − 1

E
+
‖µ1 − µE‖

E

)2

≤ δ2(r · E − 1

E
+
R+ r

E
)2 = δ2(r +

R

E
)2 (123)

However for the outlier agent,

EE(wavg) = δ2‖µE − µ̄‖2 (124)

= δ2

∥∥∥∥∥E − 1

E
µE −

∑E−1
e=1 µE
E

∥∥∥∥∥
2

(125)

≥
(E − 1

E

)2

δ2R2 (126)

Hence,

FAAavg(P ) ≥ EE(wavg)− E1(wavg) = δ2
(R2(E − 2)− 2Rr

E
+ r2

)
(127)
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Remark. When there are Ek > 1 outliers, we can similarly derive FAA for FedAvg algorithm:

E1(wavg) ≤ δ2(r +
EkR

E
)2 (128)

EE(wavg) ≥ δ2(
E − Ek
E

R− Ek
E
r)2 (129)

so as long as Ek < E
2 ,

FAAavg ≥ EE(wavg)− E1(wavg) = Ω(δ2R2) (130)

The FOCUS algorithm produces a result with

E1(wm1
) ≤ δ2r2 (131)

EE(wm2) ≤ δ2r2 (132)

Hence we still have
FAAfocus ≤ δ2r2. (133)

B.2 Proof of Theorem 4

Proof. Note that the local population loss for agent i with weights θ is

Li(θ) =

∫
pi(x, y)`(fθ(x), y)dxdy. (134)

Thus,

|Li(θ∗i )− Lj(θ∗i )| =
∫
|pi(x, y)− pj(x, y)| · `(fθ∗i (x), y)dxdy (135)

≤ G ·
∫
|pi(x, y)− pj(x, y)|dxdy ≤ Gr. (136)

Hence,
Li(θ∗j ) ≤ Lj(θ∗j ) +Gr ≤ Lj(θ∗i ) +Gr ≤ Li(θ∗i ) + 2Gr. (137)

For the cluster that combines agents {1, . . . , E − 1} together, the weight converges to
θ̄′ = 1

E−1

∑E−1
i=1 θ∗i . Then ∀i = 1, . . . , E − 1, the population loss for the ensemble predic-

tion

Li(θ,Π) = Li
(∑E−1

j=1 θ∗j

E − 1

)
(138)

≤ 1

T − 1

T−1∑
j=1

Li(θ∗j ) (139)

≤ Li(θ∗i ) +
2Gr

E − 1
. (140)

Therefore, for any i = 1, . . . , T − 1,

Ei(θ,Π) ≤ 2Gr

E − 1
. (141)

Since ET (θ,Π) = 0,

FAAfocus(W,Π) ≤ 2Gr

E − 1
(142)

Now we prove the second part of Theorem 4 for the fairness of Fedavg algorithm. For simplicity,
we define B = 2Gr

E−1 in this proof. Also, we denote the mean of all optimal weight θ̄ =
∑E

i=1 θ
∗
i

E and

θ̄′ =
∑E−1

i=1 θ∗i
E−1 .
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Remember that we assume loss functions to be L-smooth, so

LE(θ∗i ) ≤ LE(θ̄′) + 〈∇LE(θ̄′), θ∗i − θ̄′〉+
L

2
‖θ̄′ − θi‖2. (143)

Taking summation over i = 1, . . . , E − 1, we get

LE(θ̄′) ≥ 1

E − 1

(E−1∑
i=1

LE(θ∗i )− 〈∇LE(θ̄′),

E−1∑
i=1

(θi − θ̄′)〉 −
L

2

E−1∑
i=1

‖θ̄′ − θi‖2
)

(144)

=
1

E − 1

(E−1∑
i=1

LE(θ∗i )− L

2

E−1∑
i=1

‖θ̄′ − θi‖2
)

(145)

≥ LE(θ∗E) +R− LB

µ
. (146)

The last inequality uses the µ-strongly convex condition that implies

B ≥ Li(θ̄′)− Li(θ∗i ) ≥ µ

2
‖θ̄′ − θi‖2. (147)

By L-smoothness, we have

LE(θ̄′) ≤ LE(θ̄) + 〈∇LE(θ̄), θ̄′ − θ̄〉+
L

2
‖θ̄′ − θ̄‖2. (148)

LE(θ∗E) ≤ LE(θ̄) + 〈∇LE(θ̄), θ∗E − θ̄〉+
L

2
‖θ∗E − θ̄‖2. (149)

Note that θ̄ =
θ̄′+(E−1)θ∗E

E , we take a weighted sum over the above two inequalities to cancel the
dot product terms out. We thus derive

LE(θ̄) ≥
(E − 1)LE(θ̄′) + LE(θ∗E)− L

2 (E − 1)‖θ̄′ − θ̄‖2 − L
2 ‖θ
∗
E − θ̄‖2

E
(150)

=
E − 1

E

(
R− LB

µ
− L‖θ∗E − θ̄′‖2

2E

)
+ LE(θ∗E). (151)

Note that LE(·) is µ-strongly convex, which means

R− LB

µ
≥ LE(θ̄′)− LE(θ∗E) ≥ µ

2
‖θ∗E − θ̄′‖2. (152)

so
LE(θ̄) ≥ (1− L

µE
) · E − 1

E
(R− LB

µ
) + LE(θ∗E). (153)

And
EE(θ̄) ≥ (1− L

µE
) · E − 1

E
(R− LB

µ
). (154)

On the other hand, for agent i = 1, . . . , E − 1 we know

Li(θ̄) ≤ Li(θ̄′) + 〈∇Li(θ̄′), θ̄ − θ̄′〉+
L

2
‖θ̄ − θ̄′‖2. (155)

By L smoothness,

‖∇Li(θ̄′)‖2 ≤ L‖θ̄′ − θ∗i ‖ ≤ L

√
2B

µ
. (156)

So

Li(θ̄) ≤ Li(θ∗i ) +B + L

√
2B

µ

√
2(R− LB

µ )

µ

1

E
+
L(R− LB

µ )

µE2
(157)
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Ei(θ̄) ≤ B +
2L

µE

√
B(R− LB

µ
) +

L(R− LB
µ )

µE2
(158)

In conclusion, the fairness can be estimated by
FAAavg(P ) ≥ EE(θ̄)− E1(θ̄) (159)

≥
(E − 1

E
− L

µE2

)
R−

(
1 +

L(E − 1)

µE
− L2

µ2E

)
B − 2L

µE

√
B(R− L

µ
B) (160)

B.3 Proof of Divergence Reduction

Here we prove the claim that the assumption LE(θ∗e) − LE(θ∗E) ≥ R is implied by a lower bound
of the H-divergence (Zhao et al., 2022).

DH(Pe,PE) ≥ LR

4µ
(161)

Proof. Note that

DH(Pe,PE) =
1

2
min
θ

(
Le(θ) + LE(θ)

)
+

1

2

(
Le(θ∗e) + LE(θ∗E)

)
(162)

≤ 1

2

(
Le(

θ∗e + θ∗E
2

) + LE(
θ∗e + θ∗E

2
)
)
− 1

2

(
Le(θ∗e) + LE(θ∗E)

)
(163)

≤ 1

2
× (

1

2
L‖θ

∗
E − θ∗e

2
‖22 × 2) (164)

=
1

8
L‖θ∗E − θ∗e‖22 (165)

Therefore,

LE(θ∗e)− LE(θ∗E) ≥ µ‖θ∗E − θ∗e‖22
2

(166)

≥ µ

2

8DH(Pe,PE)

L
= R. (167)

C Experimental Details

C.1 Experimental Setups

Here we elaborate more details of our experiments.

Machines. We simulate the federated learning setup on a Linux machine with AMD Ryzen
Threadripper 3990X 64-Core CPUs and 4 NVIDIA GeForce RTX 3090 GPUs.

Hyperparameters. For each FL experiment, we implement both FOCUS algorithm and FedAvg
algorithm using SGD optimizer with the same hyperparameter setting. Detailed hyperparameter
specifications are listed in Table 3 for different datasets, including learning rate, the number of local
training steps, batch size, the number of training epochs, etc.

C.2 Additional Experimental Results

Histogram of loss on CIFAR. Fig. 2 shows the surrogate excess risk of every agent trained with
FedAvg and FOCUS on CIFAR dataset. For the outlier cluster that rotates 180 degrees (i.e., 2rd
cluster), FedAvg has the highest test loss for the 9th agent, resulting in a high excess risk of 2.74.
In addition, the agents in 1st cluster trained by FedAvg are influenced by the FedAvg global model
and have high excess risk. On the other hand, FOCUS successfully identifies the outlier distribution
in 2nd cluster, leading to a much lower excess risk among agents with a more uniform excess risk
distribution. Notably, FOCUS reduces the surrogate excess risk for the 9th agent to 0.44.
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Table 3: Dataset description and hyperparameters.
Dataset # training samples # test samples E M batch size learning rate local training epochs epochs

MNIST 60000 10000 10 3 6000 0.1 10 300

CIFAR 50000 10000 10 2 100 0.1 10 200

Yelp/IMDB 56000/25000 38000/25000 10 2 512 5e-5 2 3
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Figure 2: The excess risk of different agents trained with FedAvg (left) and FOCUS (right) on CIFAR dataset.

Comparison with existing fair FL methods. We present the full results of existing fair federated
learning algorithms on our data settings in terms of FAA. The results in Tables 4 and 5 show that
FOCUS achieves the lowest FAA score compared to existing fair FL methods. We note that fair FL
methods (i.e., q-FFL (Li et al., 2020b) and AFL (Mohri et al., 2019)) have lower FAA scores than
FedAvg, but their average test accuracy is worse. This is mainly because they mainly aim to improve
bad agents (i.e., with high training loss), thus sacrificing the accuracy of agents with high-quality
data.

Table 4: Comparison of FOCUS and the existing fair federated learning algorithms on the rotated
MNIST dataset.

FOCUS FedAvg q-FFL AFL
q = 0.1 q = 1 q = 3 q = 5 q = 10 λ = 0.01

Avg test accuracy 0.953 0.929 0.922 0.861 0.770 0.731 0.685 0.885
Avg test loss 0.152 0.246 0.269 0.489 0.777 0.900 1.084 0.429
FAA 0.094 0.363 0.388 0.612 0.547 0.419 0.253 0.220

Comparison with state-of-the-art FL methods. We compare FOCUS with other SOTA FL meth-
ods, including FedMA (Wang et al., 2020), Bayesian nonparametric FL (Yurochkin et al., 2019) and
FedProx (Li et al., 2020a). Specifically, the matching algorithm in (Yurochkin et al., 2019) is de-
signed for only fully-connected layers, and the matching algorithm in (Wang et al., 2020) is designed
for fully-connected and convolutional layers, while our experiments on CIFAR use ResNet-18 where
the batch norm layers and residual modules are not considered in (Wang et al., 2020; Yurochkin
et al., 2019). Therefore, we evaluate (Li et al., 2020a; Wang et al., 2020; Yurochkin et al., 2019) on
MNIST with a fully-connected network, and (Li et al., 2020a) on CIFAR with a ResNet-18 model.

The results on MNIST and CIFAR in Tables 6 and 7 show that FOCUS achieves the highest average
test accuracy and lowest FAA score than SOTA FL methods.

D Broader Impact

This paper presents a novel definition of fairness via agent-level awareness for federated learning,
which considers the heterogeneity of local data distributions among agents. We develop FAA as a
fairness metric for Federated learning and design FOCUS algorithm to improve the corresponding
fairness. We believe that FAA can benefit the ML community as a standard measurement of fairness
for FL based on our theoretical analyses and empirical results.
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Table 5: Comparison of FOCUS and the existing fair federated learning algorithms on the rotated
CIFAR dataset.

FOCUS FedAvg q-FFL AFL
q = 0.1 q = 1 q = 3 q = 5 q = 10 λ = 0.01

Avg test accuracy 0.929 0.908 0.897 0.833 0.778 0.699 0.565 0.901
Avg test loss 0.217 0.262 0.306 0.704 0.876 1.139 1.263 0.324
FAA 0.365 0.537 0.661 0.542 0.525 0.494 0.421 0.514

Table 6: Comparison of FOCUS and other SOTA federated learning algorithms on the rotated
MNIST dataset.

FOCUS FedAvg FedProx FedMA Bayesian
µ = 1 µ = 0.1 µ = 0.01 Nonparametric

Avg test accuracy 0.953 0.929 0.908 0.927 0.929 0.753 0.517
Avg test loss 0.152 0.246 0.315 0.252 0.246 0.856 2.293
FAA 0.094 0.363 0.526 0.378 0.365 1.810 0.123

A possible negative societal impact may come from the misunderstanding of our work. For example,
low FAA does not necessarily mean low loss or high accuracy. Additional utility evaluation metrics
are required to evaluate the overall performance of different federated learning algorithms. We have
tried our best to define our goal and metrics clearly in Section 3; and state all assumptions for our
theorems accurately in Section 4 to avoid potential misuse of our framework.

Table 7: Comparison of FOCUS and other SOTA federated learning algorithms on the rotated CI-
FAR dataset.

FOCUS FedAvg FedProx
µ = 1 µ = 0.1 µ = 0.01

Avg test accuracy 0.929 0.908 0.910 0.922 0.925
Avg test loss 0.217 0.262 0.282 0.245 0.239
FAA 0.365 0.537 0.698 0.700 0.654
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