
Review - Final

1.1 Intro
Characteristics of DS

Present a single-system image

Hide internal organization, communication details
Provide uniform interface

Easily expandable

Adding new servers is hidden from users
Continuous availability

Failures in one component can be covered by other components
Supported by middleware

Goal of DS

Resource Availiability

Transparancy: hide details and appears to its users & applications to be a single computer
system

Openness:

Interoperability: The ability of two different systems or applications to work together
Portability: An application designed to run on one distributed system can run on
another system which implements the same interface.
Extensibility: Easy to add new components, features

Scalability: w.r.t. size, geographical distribution, number of administrative organizations
spanned

1.2 Classical Synchronization
Concurrency

Allows safe/multiplexed access to shared resources
Critical Section: piece of code accessing a shared resource, usually variables or data
structures
Race Condition: Multiple threads of execution enter CS at the same time, update shared
resource, leading to undesirable outcome
Indeterminate Program: One or more Race Conditions, output of program depending on
ordering, non-deterministic

Mutual Exclusion

guarantee that only a single thread/process enters a CS, avoiding races
Correctness: single process in CS at one time
Efficiency: No waiting for availible resources, no spin-locks
Bounded waiting: Fairness. No process waits forever.

af://n1957
af://n1958
af://n1959
af://n1980
af://n1998
af://n1999
af://n2010

Atomic Test-and-set Mutex

Semaphore: Initialized and set to integer value

P(x) stands for proberen, Dutch for “to test”
V(x) stands for verhogen, Dutch for “to increment”
binary semaphore = mutex

Condition variables:

cvars provide a sync point, one thread suspended until activated by another. (more
efficient way to wait than spin lock)
cvar always associated with mutex
Wait() and Signal() operations defined with cvars

Example: FIFO queue

Incorrect. If empty, lock forever

This introduces a spin-lock, not efficient. Also may lead to a livelock.
Livelock: Processes running without making progress.

Acquire_Mutex(<mutex>){while(!TestAndSet(<mutex>))}
{CS}
Release_Mutex(<mutex>){<mutex> = 1}

1
2
3

x.P():
 while (x == 0) wait;
 x–-
x.V():
 x++

1
2
3
4
5

b.Remove():
 b.mutex.lock()
 x = b.sb.Remove()
 b.mutex.unlock()
 return x

1
2
3
4
5

b.Remove():
 retry:
 b.mutex.lock()
 if !(b.sb.len() > 0){
 b.mutex.unlock()
 goto retry
 }

1
2
3
4
5
6
7

af://n2047

Use while instead of if:

With Mesa semantics, there is a point of vulnerability right after resuming execution and
before locking mutex.
Hence, always recheck the condition using a while loop.

Concurrency vs. Parellelism

Concurrency is not parallelism, although it enables parallelism
1 Processor: Program can still be concurrent but not parallel

2 Networks
Network Links

Latency: first package to reach
Capacity (bandwidth): bits/sec
Jitter: Variation in latency
Loss/Reliability: Drop packages or not
Reordering

Package Delay:

Propagation: Latency
Transimission: Bandwidth, depending on the bottleneck link
Processing: Router speed
Queueing: Traffic load and queue size
RTT: Round trip time = 2 Latency

Store and forward Protocol:

Store only one package instead of the full data!
Propagation Delay + Transmission delay + Store and Forward delay(package size /
arriving rate)

b.Init():
 b.sb = NewBuf()
 b.mutex = 1
 b.cvar = NewCond(b.mutex)

b.Insert(x):
 b.mutex.lock()
 b.sb.Insert(x)
 b.sb.Signal()
 b.mutex.unlock()

b.Remove():
 b.mutex.lock()
 while b.sb.Empty() {
 b.cvar.wait()
 }
 x = b.sb.Remove()
 b.mutex.unlock()
 return x

b.Flush():
 b.mutex.lock()
 b.sb.Flush()
 b.mutex.unlock()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

af://n2074
af://n2075

Stop and wait Protocol:

Send a single package and wait for acknowledgement
Improvement: Constantly sending packages and use a sliding window to record
unacknowledged packages

Ethernet Frame

Addresses: 6 bytes (MAC address)
Type: 2 bytes. Indicates the higher layer protocol, mostly IP.

Frame is received by all adapters on a LAN and dropped if address does not match.

When receiving a package, the bridge looks up the entry for the destiny MAC address

If exists, forward
If no, boardcast except the arriving port

Learning bridges: Fill in the forward table by source addresses

Inter-net

Challenges: Heterogeneity

Need a standard: IP

IP address: DNS Translates human readable names to logical endpoints

Connection with Link layer:

ARP (Address Resolution Protocol): Transfer an IP address to a MAC address
Boardcast search, destination responses

Getting an IP address:

ISPs get from Regional Internet Registries (RIRs)
Or Dynamic Host Configuration Protocol (DHCP)

Layering

Example: Application Transport Network Link

Each layer relies on services from layer below and exports services to layer above

Protocols define:

Interface to higher layers (API)
Interface to peer (syntax & semantics)

Hide implementation: Change layers without disturbing other layers

af://n2117
af://n2137
af://n2160

Web connection diagram

Transport Protocols

Hop-by-hop vs. end-to-end
UDP vs. TCP
UDP: voice, multimedia
TCP: Web, Mails

3.1 Synchronization
Coordinated Universal Time (UTC)

Signals from land-based stations: 0.1-10 milliseconds ()
Signals from GPS: 1 microsecond ()
Clock drift rate:
Network Time Protocol (NTP): hierarchical synchronization. Fits PC demand.

Synchronization Algorithm

Bound error by bounding propagation delay: set time to

 Cristian's algorithm

Cristian's algorithm

af://n2176
af://n2190
af://n2191
af://n2201

Measures RTT . Receiver set time to
Error bounded by

Berkeley algorithm

One master clock send request to all others, compute the average and inform everyone
to adjust

3.2 Distributed Logical Clocks
Happens Before relatioin

 if a is in front of b in 's' local event
 if is the event of sending message while is to receive it

Concurrent events:

Lamport Clock

If , we must have

BUT not the reverse

Lamport's algorithm

Local: increment for each event
When receiving messages ,

Total-order Lamport Clock:

 of processes

Vector Clock

Label each event with , where is the number of events in process i that
causally precede e

Remark:

Lamport clock provides one-way encoding from causality to logical time;
Vector clock provides exact causality information

4 Blockchain

4.1 Hash Functions

Collision-Free

computationally hard to find , s.t. but

af://n2221
af://n2222
af://n2231
af://n2253
af://n2257
af://n2264
af://n2265
af://n2266

SHA

Blockchain

Hiding (One-way function)

Given , hard to find

Puzzle-friendly

no solving strategy is much better than trying random values of

SHA-256

Blockchain

Hash pointer: pointer to where the info is stored, and also the hash of the info
When modify one block, all the blocks after would know

Merkle Tree

Use Hash pointers to form a tree. Data stored at the bottom.
 data blocks requires layers. Show items to prove membership.

af://n2270
af://n2274
af://n2278
af://n2280
af://n2287

4.2 Bitcoin Consensus

Consensus Algorithm

1. New transactions are broadcast to all nodes
2. Each node collects new transactions into a block
3. In each round a random node gets to broadcast its block
4. Other nodes accept the block only if all transactions in it are valid (unspent, valid signatures)
5. Nodes express their acceptance of the block by including its hash in the next block they

create

Remark:

Protection against invalid transactions is cryptographic, but enforced by consensus
Protection against double-spending is purely by consensus
Double spend probability decreases exponentially with # of confirmations

Incentives

Block reward
Transaction fees

Randomness of creating node

Puzzle: is small
nonce published as part of the block

5 Remote Procedure Call

RPC: attempts to make remote procedure calls look like local ones

Go example:

Client side: First dials the server, then make a remote call:

Server side:

client, err := rpc.DialHTTP("tcp", serverAddress + ":1234")
if err != nil { log.Fatal("dialing:", err) }
args := &server.Args{7,8}
var reply int
err = client.Call("Arith.Multiply", args, &reply)
if err != nil {
 log.Fatal("arith error:", err)
}
fmt.Printf("Arith: %d*%d=%d", args.A, args.B, reply)

1
2
3
4
5
6
7
8
9
10

af://n2294
af://n2295
af://n2307
af://n2315
af://n2321
af://n2328
af://n2332
af://n2340

The server then calls (for HTTP service):

Create a map from function name to functions:

for example, Arith.Multiply &Multiply()

Messaging go objects:

Marshal / Unmarshal; Serialization/Deserialization
Marshal: Transfer structured objects to sequential text

Stub: Obtaining transparency

Client stub:

Marshal arguments into machine independent format
unmarshals results received from server

Server stub:

unmarshals arguments and builds stack frame
calls procedure
marshals results and sends reply

Endian

An agreement on little or big endian: Network order

Semantics: Break transparency

Expose remoteness to client, since you cannot hide them (Cannot distinguish a failure from
latency)

Exactly-once

Impossible in practice
The robot could crash immediately before or after messaging and lose its state. Don’t
know which one happened.

At least once:

package server
type Args struct { A, B int }
type Quotient struct { Quo, Rem int }
type Arith int
func (t *Arith) Multiply(args *Args, reply *int) error {
*reply = args.A * args.B
return nil }
func (t *Arith) Divide(args *Args, quo *Quotient) error {
 if args.B == 0 { return errors.New("divide by zero") }
 quo.Quo = args.A / args.B
 quo.Rem = args.A % args.B
 return nil
}

1
2
3
4
5
6
7
8
9
10
11
12
13

arith := new(Arith)
rpc.Register(arith)
rpc.HandleHTTP()
l, e := net.Listen("tcp", ":1234")
if e != nil { log.Fatal("listen error:", e) }
go http.Serve(l, nil)

1
2
3
4
5
6

af://n2375
af://n2380

Asynchronized RPC

Only for idempotent operations
Clients just keep trying unti getting a response
Server just processes requests as normal, doesn‘t remember anything. Simple!

At most once

Zero, don’t know, or once
Must re-send previous reply and not process request (implies: keep cache of handled
requests/responses)
Must be able to identify requests
Solution: Keep sliding window of valid RPC IDs, have clients number them sequentially.

Zero or once

Transactional semantics

Asynchronized RPC

6 Mutual Exclusion
Requirements

Correctness: At most one process holds the lock
Fairness: no starvation
Low message overhead (protocol complexity)
Tolerate out-of-order messages

6.1 Centralized Algorithm

Coordinator:

// Asynchronous call
quotient := new(Quotient)
divCall := client.Go("Arith.Divide", args, quotient, nil)
replyCall := <-divCall.Done // will be equal to divCall
// check errors, print, etc.

1
2
3
4
5

af://n2416
af://n2420
af://n2421
af://n2431
af://n2432

Clients:

Correct and Fair (If clients never crash)!

Performance:

3 cycles per cycle (1 request, 1 grant, 1 release)

Selecting a leader: bully algorithm

6.2 Decentralized Algorithm

Assume that there are coordinators

Access requires a majority vote from coordinators.
A coordinator always responds immediately to a request with GRANT or DENY

Node failures are still a problem

Coordinators may forget vote on reboot
What if you get less than votes?

Backoff and retry later
Large numbers of nodes requesting access can affect availability
Starvation!

6.3 Totally Ordered Multicast

Use totally ordered Lamport clock

Details

Each message is timestamped with the current logical time of its sender.
Assume all messages sent by one sender are received in the order they were sent and
that no messages are lost.
Receiving process puts a message into a local queue ordered according to timestamp.
The receiver multicasts an ACK to all other processes.
Only deliver message when it is both at the head of queue and ack’ed by all participants

while true:
 m = Receive()
 if m == (Request, i)
 if Available():
 Send (Grant) to i
 else:
 Put i in the queue
 if m == (Release)&&!empty(Q):
 Remove ID j from Q
 Send (Grant) to j

1
2
3
4
5
6
7
8
9
10

Request:
 Send (Request, i) to coordinator
 Wait for reply
Release:
 Send (Release, i) to coordinator

1
2
3
4
5

af://n2434
af://n2444
af://n2446
af://n2470

Mutual Exclusion methods

6.4 Distributed Mutual Exclusion

An operation to CS: totally ordered Multicast

Difference

the receiver only need to unicast the ack to its sender, since only the requester needs to
know the message is ready to commit.
Release messages are broadcast to let others to move on

Correctness

When process x generates request with time stamp , and it has received replies from
all in , then its contains all requests with time stamps .

Performance

Process i sends request messages
Process i receives reply messages
Process i sends release messages.

Improvement: Ricart & Agrawala

Trick: Only reply after completing its own earlier operations in the CS
Deadlock free: since there is no cycles such that
Starvation free: after requesting with time stamp , every other processes will update their
clock to .
Performance: requests and replies.

A token ring algorithm

Correctness:

Clearly safe: Only one process can hold token
Fairness:

Will pass around ring at most once before getting access.
Performance:

Each cycle requires between messages
Latency of protocol between 0 &

af://n2488
af://n2489
af://n2512
af://n2523

VFS

7 Distributed File System

Data sharing among multiple users
User mobility
Location transparency
Backups and centralized management

VFS

A simple approach (NFS)

Use RPC to forward every file system operation to the server
Server serializes all accesses, performs them, and sends back result.
Great: Same behavior as if both programs were running on the same local filesystem!
Bad: Performance can stink. Latency of access to remote server often much higher than to
local memory.

AFS

Assumptions

Clients can cache whole files over long periods
Write/Write, Write/Read share are rare

Cells and Volumes

cell: administrative groups
cells broken into volumes

af://n2545
af://n2556
af://n2559
af://n2570

Caching

NFS Write:

Dirty data are buffered on the client machine until file close or up to 30 seconds
File attributes in the client cache expire after 60 seconds
when file is closed, all modified blocks sent to server.

AFS

Callbacks: server tells clients "Invalidate" if the file changes. So the client may re-read it.
Remove Callback when client has flushed the data from its disk

Tradeoff: consistency, performance, scalability.

Client-side caching is a fundamental technique to improve scalability and performance. But
raises important questions of cache consistency.

Name Space

NFS: per-client linkage vs. AFS: global name space

NFS: no transparency

If a directory is moved from one server to another, client must remount
AFS: transparency

If a volume is moved from one server to another, only the volume location database on
the servers needs to be updated

8 Distributed Replication

Write replication requires some degree of consistency

Strict Consistency

Read always returns value from latest write
Sequential Consistency

All nodes see operations in some sequential order
Operations of each process appear in-order in this sequence

Causal Consistency

af://n2587
af://n2611
af://n2626

P1: W(x)c and P2: W(x)b are concurrent so its not important that all processes see
them in the same order
However Wx(a) and R(x)a and then W(x)b are potentially causally related so they
must be in order.
This sequence is allowed with a causally-consistent store, but not with a sequentially
consistent store.

8.1 Primary-backup Replication Model

Assumptions:

Group membership manager: allow replica nodes to join/leave
Fail-stop failure model: (not Byzantine) server may crash, might come up again.
Failure detector

 parimary backup

Primary backup: Writes always go to primary, read from any backup

At least once or at most once: Ack send back after Backup finish; or Ack send back only after
commited logged at Primary

Major drawback: Slow response times in case of failures.

8.2 Consensus Replication Model

Quorum based consensus:

Designed to have fast response time even under failures
Operate as long as majority of machines is still alive
To handle failures, must have replicas
Major difference: you want replicated Write protocols so that you can write to multiple
replicas instead of just one.

Paxos approach: on multiple servers reaching consensus on a single value.

Requirements:

Correctness: Only a single value may be chosen. A machine never learns that a value
has been chosen unless it really has been. The agreed value X has been proposed by

af://n2653
af://n2672

some node
Liveness: Some proposed value is eventually chosen. If a value is chosen, servers
eventually learn about it
Fault-tolerance: If less than nodes fail, the rest should reach agreement
eventually
Note: Paxos sacrifices liveness in favor of correctness

Synchronous DS: bounded amount of time node can take to process and respond to a
request

Asynchronous DS: timeout is not perfect

FLP Impossibility

It is impossible for a set of processors in an asynchronous system to agree on a binary
value, even if only a single processor is subject to an unannounced failure.

 Paxos

Proposers, Acceptors, Learners

The key: once a proposal with value is chosen, all higher proposals must have value , since
 remains the highest accepted value (It occupies servers).

Remark: Only proposer knows chosen value (majority acccepted). No guarantee that
proposer’s original value v is chosen by itself. Number is basically a Lamport clock, always
unique .

9 Byzantine Fault Tolerance

Dependability implies the following:

Availability: probability the system operates correctly at any given moment
Reliability: ability to run correctly for a long interval of time
Safety: failure to operate correctly does not lead to catastrophic failures
Maintainability: ability to “easily” repair a failed system

BFT: Nodes may be malicious. Must agree on a value among benign nodes.

Quorum base:

Any two quorums must intersect at least one honest node.
For liveness, the quorum size must be at most .

, so .

af://n2714

GFS

Byzantine agreement

Phase 1: Each process sends its value to the other processes.

Correct processes send the same (correct) value to all.
Faulty processes may send different values to each if desired (or no message).

Phase 2: Each process uses the messages to create a vector of responses – must be a default
value for missing messages.

Phase 3: Each process sends its vector to all other processes.

Phase 4: Each process the information received from every other process to do its
computation.

10 GFS & MapReduce

GFS is a distributed fault-tolerant file system

GFS Assumptions

Small number of large files

Large streaming reads

Large, sequential writes that append

Concurrent appends by multiple clients

For concurrency, only need to lock a small size of disk

Client sends master: read(file name, chunk index)
Master’s reply: (chunk ID, chunk version number, locations of replicas)
Client sends “closest” chunkserver w/replica: read(chunk ID, byte range)
Chunkserver replies with data

GFS Master Server

Holds all metadata:

namespace
access control information
mapping from files to chunks
current locations of chunks

Logs all client requests to disk sequentially

Replicates log entries to remote backup servers

Only replies to client after log entries safe on disk on self and backups!

Periodic checkpoints as an on-disk Btree

af://n2738
af://n2754
af://n2758
af://n2781

GFS clients

Master grant lease to primary (for each chunk) (60 sec), which is renewed using periodic
heartbeat

provide with 2 special operations:

snapshot: creating a copy of the current instance of a file or directory tree.
append: allows clients to append data as an atomic operation without lock. Multiple
processes can append to the same file concurrently

Fault tolerant:

Master: Replays log from disk

Recovers namespace (directory) information, recovers file-to-chunk-ID mapping (but not
location of chunks)
Asks chunkservers which chunks they hold, recovers chunk-ID-to-chunkserver mapping
If chunk server has older chunk, it’s stale; if chunk server has newer chunk, adopt its
version number

Chunkserver dead:

Master notices missing heartbeats, decrements count of replicas for all chunks on dead
chunkserver
Master re-replicates chunks missing replicas in background

MapReduce

Programs implement Mapper and Reducer classes

Mapper: Generate <key,value> pairs

Reducer: Iterate among all keys, outputs one or multiple <key,value> pairs

Remarks:

Computation broken into many, short-lived tasks
Use disk storage to hold intermediate results

Limitations: spend too much time on I/O to disks and over network. This makes interactive
data analysis impossible

11 Sparks

In memory fault-tolerant computation

Resilient Distributed Dataset (RDD)

Immutable: cannot be modified once created. This enables lineage (recreate any RDD
at any time) and is compatiable with HDFS (append only).
Transformations: create new RDD from existing ones
Actions: compute a value based on an RDD. Either return or saved to an external
storage system
Persist RDD to a memory

Transformations are lazy: their result RDD is not immediately computed. Their evaluation
only triggered by Action!

This enables spark to optimize the required operations; and allows Spark to recover from
failures and slow workers

af://n2802
af://n2813
af://n2832
af://n2850

By default, RDDs are recomputed each time you run an action on them. This can be
expensive if you need to use the dataset more than once. Call persist() or cache() to
cache an RDD in memory.

BSP computation abstraction: Any distributed system can be emulated as local work +
message passing (=BSP)

Challenges: communication overheads and stragglers

P2P+selective communication, bounded-delay BSP

12 Mining Pools and Bitcoin
12.1 Mining pools

Partial Method used as measuring the amount of work a miner does

Naive solution: assign reward proportional to the amount of work.

Issue: If miners jump to new pools?

The expected rewards:
Do not reward each share equally!

Examples:

Slush's method: scoring function: . Gives advantage to miners who joined late.
Pay-per-share: the operator pays per each partial solution no matter if he managed to
extend the chain.

Attacks:

Sabotage: Only submit partial solutions
Lie-in-wait: spread computing power over many pools. Once find one, wait a while only
mining for that pool and then submit

12.2 Bitcoin Transactions

In: where do you get your money?

prev_out : previous transaction（收⼊来源的交易账单）only hash + index (since there
may be multiple out)
scriptSig : your signature

Out:

value : how much you spend
scriptPubKey : public key of acceptor
The rest coins must be sent back to yourself

If tracing back each transaction, must end up with coinbase , which is generated by mining.

coinbase has prev_out: hash = 0, n = 4294967295 .

Multisig: specify public keys, verification requires signatures.

Example: 2-of-3 multisig used for escrow transactions.

If either Alice or Bob does not fulfill his/her job, the third party (randomly selected) will
give signature

af://n2878
af://n2879
af://n2905

Pay to script hash (P2SH): the previous Pay to PublicKey Hash (P2PKH) is too complicated.
The seller can design a script beforehead, so the buyer only need to send bitcoins to that
hash address.

Lock time: designed for small transactions

12.3 Limitation and Improment

throughput limitation: 7 transactions/sec, comparing to 2000-10000 for VISA
Hard-forking vs. soft-forking

af://n2939

	Review - Final
	1.1 Intro
	Characteristics of DS
	Goal of DS

	1.2 Classical Synchronization
	Concurrency
	Mutual Exclusion
	Example: FIFO queue

	2 Networks
	Network Links
	Ethernet Frame
	Inter-net
	Layering
	Transport Protocols

	3.1 Synchronization
	Coordinated Universal Time (UTC)
	Synchronization Algorithm

	3.2 Distributed Logical Clocks
	Happens Before relatioin
	Lamport Clock
	Vector Clock
	Remark:

	4 Blockchain
	4.1 Hash Functions
	Collision-Free
	Hiding (One-way function)
	Puzzle-friendly
	SHA-256
	Blockchain
	Merkle Tree

	4.2 Bitcoin Consensus
	Consensus Algorithm
	Remark:

	Incentives
	Randomness of creating node

	5 Remote Procedure Call
	Go example:
	Endian
	Semantics: Break transparency
	Asynchronized RPC

	6 Mutual Exclusion
	Requirements
	6.1 Centralized Algorithm
	Coordinator:
	Clients:
	Selecting a leader: bully algorithm
	6.2 Decentralized Algorithm
	6.3 Totally Ordered Multicast
	6.4 Distributed Mutual Exclusion
	An operation to CS: totally ordered Multicast
	Improvement: Ricart & Agrawala
	A token ring algorithm

	7 Distributed File System
	VFS
	A simple approach (NFS)
	AFS
	Caching
	Name Space

	8 Distributed Replication
	8.1 Primary-backup Replication Model
	8.2 Consensus Replication Model

	9 Byzantine Fault Tolerance
	Byzantine agreement

	10 GFS & MapReduce
	GFS Assumptions
	GFS Master Server
	GFS clients
	Fault tolerant:
	MapReduce

	11 Sparks
	12 Mining Pools and Bitcoin
	12.1 Mining pools
	12.2 Bitcoin Transactions
	12.3 Limitation and Improment

