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1.1 Intro  
Characteristics of DS  

Present a single-system image

Hide internal organization, communication details
Provide uniform interface

Easily expandable

Adding new servers is hidden from users
Continuous availability

Failures in one component can be covered by other components
Supported by middleware

Goal of DS  

Resource Availiability

Transparancy: hide details and appears to its users & applications to be a single computer 
system

Openness:

Interoperability: The ability of two different systems or applications to work together
Portability: An application designed to run on one distributed system can run on 
another system which implements the same interface.
Extensibility: Easy to add new components, features

Scalability: w.r.t. size, geographical distribution, number of administrative organizations 
spanned

 

1.2 Classical Synchronization  
Concurrency  

Allows safe/multiplexed access to shared resources
Critical Section: piece of code accessing a shared resource, usually variables or data 
structures 
Race Condition: Multiple threads of execution enter CS at the same time, update shared 
resource, leading to undesirable outcome
Indeterminate Program: One or more Race Conditions, output of program depending on 
ordering, non-deterministic

 

Mutual Exclusion  

guarantee that only a single thread/process enters a CS, avoiding races 
Correctness: single process in CS at one time
Efficiency: No waiting for availible resources, no spin-locks
Bounded waiting: Fairness. No process waits forever.
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Atomic Test-and-set  Mutex

Semaphore: Initialized and set to integer value

P(x) stands for proberen, Dutch for “to test”
V(x) stands for verhogen, Dutch for “to increment”
binary semaphore = mutex

Condition variables:

cvars provide a sync point, one thread suspended until activated by another. (more 
efficient way to wait than spin lock )
cvar always associated with mutex
Wait()  and Signal()  operations defined with cvars

Example: FIFO queue  

Incorrect. If empty, lock forever

This introduces a spin-lock, not efficient. Also may lead to a livelock.
Livelock: Processes running without making progress.

Acquire_Mutex(<mutex>){while(!TestAndSet(<mutex>))}
{CS}
Release_Mutex(<mutex>){<mutex> = 1} 
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x.P():
    while (x == 0) wait; 
    x–-
x.V():
    x++ 
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b.Remove():
    b.mutex.lock()
    x = b.sb.Remove()
    b.mutex.unlock()
    return x
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b.Remove():
    retry:
        b.mutex.lock()
        if !(b.sb.len() > 0){
            b.mutex.unlock()
            goto retry  
        }

1
2
3
4
5
6
7

af://n2047


Use while instead of if:

With Mesa semantics, there is a point of vulnerability right after resuming execution and 
before locking mutex.
Hence, always recheck the condition using a while loop.

Concurrency vs. Parellelism

Concurrency is not parallelism, although it enables parallelism 
1 Processor: Program can still be concurrent but not parallel

2 Networks  
Network Links  

Latency: first package to reach
Capacity (bandwidth): bits/sec
Jitter: Variation in latency
Loss/Reliability: Drop packages or not
Reordering

 

Package Delay:

Propagation: Latency
Transimission: Bandwidth, depending on the bottleneck link
Processing: Router speed
Queueing: Traffic load and queue size
RTT: Round trip time = 2  Latency

Store and forward Protocol:

Store only one package instead of the full data!
Propagation Delay + Transmission delay + Store and Forward delay(package size / 
arriving rate)

b.Init():
    b.sb = NewBuf()
    b.mutex = 1
    b.cvar = NewCond(b.mutex)
    
b.Insert(x):
    b.mutex.lock()
    b.sb.Insert(x)
    b.sb.Signal()
    b.mutex.unlock()
    
b.Remove():
    b.mutex.lock()
    while b.sb.Empty() {
        b.cvar.wait()
    }
    x = b.sb.Remove()
    b.mutex.unlock()
    return x

b.Flush():
   b.mutex.lock()
   b.sb.Flush() 
   b.mutex.unlock()
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Stop and wait Protocol:

Send a single package and wait for acknowledgement
Improvement: Constantly sending packages and use a sliding window to record 
unacknowledged packages

 

Ethernet Frame  

Addresses: 6 bytes (MAC address)
Type: 2 bytes. Indicates the higher layer protocol, mostly IP.

 

Frame is received by all adapters on a LAN and dropped if address does not match.

When receiving a package, the bridge looks up the entry for the destiny MAC address

If exists, forward
If no, boardcast except the arriving port

Learning bridges: Fill in the forward table by source addresses

 

Inter-net  

Challenges: Heterogeneity

Need a standard: IP

IP address: DNS Translates human readable names to logical endpoints

Connection with Link layer:

ARP (Address Resolution Protocol): Transfer an IP address to a MAC address
Boardcast search, destination responses

Getting an IP address:

ISPs get from Regional Internet Registries (RIRs) 
Or Dynamic Host Configuration Protocol (DHCP)

Layering  

Example: Application  Transport  Network  Link

Each layer relies on services from layer below and exports services to layer above

Protocols define:

Interface to higher layers (API)
Interface to peer (syntax & semantics)

Hide implementation: Change layers without disturbing other layers
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Web connection diagram

Transport Protocols  

Hop-by-hop vs. end-to-end
UDP vs. TCP
UDP: voice, multimedia
TCP: Web, Mails

 

3.1 Synchronization  
Coordinated Universal Time (UTC)  

Signals from land-based stations: 0.1-10 milliseconds ( )
Signals from GPS: 1 microsecond ( )
Clock drift rate: 
Network Time Protocol (NTP): hierarchical synchronization. Fits PC demand.

Synchronization Algorithm  

Bound error by bounding propagation delay: set time to 

 

     

    
 

    Cristian's algorithm

Cristian's algorithm
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Measures RTT . Receiver set time to 
Error bounded by 

 

Berkeley algorithm

One master clock send request to all others, compute the average and inform everyone 
to adjust

 

3.2 Distributed Logical Clocks  
Happens Before relatioin  

 if a is in front of b in 's' local event
 if  is the event of sending message while  is to receive it

Concurrent events: 

 

Lamport Clock  

If , we must have 

BUT not the reverse

Lamport's algorithm

Local: increment  for each event
When receiving messages , 

Total-order Lamport Clock:

 of processes

Vector Clock  

Label each event with , where  is the number of events in process i that 
causally precede e

Remark:  

Lamport clock provides one-way encoding from causality to logical time;
Vector clock provides exact causality information

 

4 Blockchain  

4.1 Hash Functions  

Collision-Free  

computationally hard to find , s.t.  but 

af://n2221
af://n2222
af://n2231
af://n2253
af://n2257
af://n2264
af://n2265
af://n2266


 

SHA

 

Blockchain

Hiding (One-way function)  

Given , hard to find 

Puzzle-friendly  

no solving strategy is much better than trying random values of 

SHA-256  

Blockchain  

Hash pointer: pointer to where the info is stored, and also the hash of the info
When modify one block, all the blocks after would know

Merkle Tree  

Use Hash pointers to form a tree. Data stored at the bottom.
 data blocks requires  layers. Show  items to prove membership.
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4.2 Bitcoin Consensus  

Consensus Algorithm  

1. New transactions are broadcast to all nodes
2. Each node collects new transactions into a block
3. In each round a random node gets to broadcast its block
4. Other nodes accept the block only if all transactions in it are valid (unspent, valid signatures)
5. Nodes express their acceptance of the block by including its hash in the next block they 

create

Remark:  

Protection against invalid transactions is cryptographic, but enforced by consensus
Protection against double-spending is purely by consensus
Double spend probability decreases exponentially with # of confirmations

Incentives  

Block reward
Transaction fees

Randomness of creating node  

Puzzle:  is small
nonce published as part of the block

 

5 Remote Procedure Call  

RPC: attempts to make remote procedure calls look like local ones

Go example:  

Client side:  First dials the server, then make a remote call:

Server side:  

client, err := rpc.DialHTTP("tcp", serverAddress + ":1234")
if err != nil { log.Fatal("dialing:", err) }
args := &server.Args{7,8}
var reply int
err = client.Call("Arith.Multiply", args, &reply)
if err != nil {
    log.Fatal("arith error:", err)
}
fmt.Printf("Arith: %d*%d=%d", args.A, args.B, reply)
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The server then calls (for HTTP service): 

Create a map from function name to functions:

for example, Arith.Multiply   &Multiply()

Messaging go objects: 

Marshal / Unmarshal; Serialization/Deserialization 
Marshal: Transfer structured objects to sequential text

Stub: Obtaining transparency

Client stub:

Marshal arguments into machine independent format
unmarshals results received from server

Server stub:

unmarshals arguments and builds stack frame
calls procedure
marshals results and sends reply

Endian  

An agreement on little or big endian: Network order 

 

Semantics: Break transparency  

Expose remoteness to client, since you cannot hide them (Cannot distinguish a failure from 
latency)

Exactly-once

Impossible in practice
The robot could crash immediately before or after messaging and lose its state.  Don’t 
know which one happened.  

At least once: 

package server
type Args struct { A, B int }
type Quotient struct { Quo, Rem int } 
type Arith int 
func (t *Arith) Multiply(args *Args, reply *int) error { 
*reply = args.A * args.B 
return nil } 
func (t *Arith) Divide(args *Args, quo *Quotient) error { 
    if args.B == 0 { return errors.New("divide by zero") } 
    quo.Quo = args.A / args.B 
    quo.Rem = args.A % args.B 
    return nil 
} 
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arith := new(Arith) 
rpc.Register(arith) 
rpc.HandleHTTP() 
l, e := net.Listen("tcp", ":1234") 
if e != nil { log.Fatal("listen error:", e) } 
go http.Serve(l, nil)
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Asynchronized RPC

Only for idempotent operations
Clients just keep trying unti getting a response
Server just processes requests as normal, doesn‘t remember anything.  Simple!

At most once

Zero, don’t know, or once
Must re-send previous reply and not process request (implies:  keep cache of handled 
requests/responses)
Must be able to identify requests
Solution: Keep sliding window of valid RPC IDs, have clients number them sequentially.

Zero or once

Transactional semantics

Asynchronized RPC  

 

6 Mutual Exclusion  
Requirements  

Correctness: At most one process holds the lock
Fairness: no starvation
Low message overhead (protocol complexity)
Tolerate out-of-order messages

6.1 Centralized Algorithm  

Coordinator:  

// Asynchronous call
quotient := new(Quotient)
divCall := client.Go("Arith.Divide", args, quotient, nil)
replyCall := <-divCall.Done   // will be equal to divCall
// check errors, print, etc.
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Clients:  

Correct and Fair (If clients never crash)!

Performance:

3 cycles per cycle (1 request, 1 grant, 1 release)

Selecting a leader: bully algorithm  

 

6.2 Decentralized Algorithm  

Assume that there are  coordinators

Access requires a majority vote from  coordinators. 
A coordinator always responds immediately to a request with GRANT or DENY

Node failures are still a problem

Coordinators may forget vote on reboot
What if you get less than  votes?

Backoff and retry later
Large numbers of nodes requesting access can affect availability
Starvation!

 

6.3 Totally Ordered Multicast  

Use totally ordered Lamport clock

Details

Each message is timestamped with the current logical time of its sender.
Assume all messages sent by one sender are received in the order they were sent and 
that no messages are lost.
Receiving process puts a message into a local queue ordered according to timestamp.
The receiver multicasts an ACK to all other processes.
Only deliver message when it is both at the head of queue and ack’ed by all participants

 

while true:         
    m = Receive()       
    if m == (Request, i)        
        if Available():                 
            Send (Grant) to i           
        else:            
            Put i in the queue    
    if m == (Release)&&!empty(Q):       
        Remove ID j from Q          
        Send (Grant) to j
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Request:    
    Send (Request, i) to coordinator    
    Wait for reply
Release:    
    Send (Release, i) to coordinator
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Mutual Exclusion methods

6.4 Distributed Mutual Exclusion  

An operation to CS: totally ordered Multicast  

Difference

the receiver only need to unicast the ack to its sender, since only the requester needs to 
know the message is ready to commit. 
Release messages are broadcast to let others to move on

Correctness

When process x generates request with time stamp , and it has received replies from 
all  in , then its  contains all requests with time stamps .

Performance

Process i sends  request messages
Process i receives  reply messages
Process i sends  release messages.

Improvement: Ricart & Agrawala  

Trick: Only reply after completing its own earlier operations in the CS
Deadlock free: since there is no cycles such that 
Starvation free: after requesting with time stamp , every other processes will update their 
clock to .
Performance:  requests and  replies. 

 

A token ring algorithm  

Correctness: 

Clearly safe: Only one process can hold token 
Fairness: 

Will pass around ring at most once before  getting access.
Performance: 

Each cycle requires between  messages
Latency of protocol between 0 & 
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VFS

7 Distributed File System  

Data sharing among multiple users
User mobility
Location transparency
Backups and centralized management

 

VFS  

 

A simple approach (NFS)  

Use RPC to forward every file system operation to the server
Server serializes all accesses, performs them, and sends back result.
Great:  Same behavior as if both programs were running on the same local filesystem!
Bad:  Performance can stink.  Latency of access to remote server often much higher than to 
local memory.

 

AFS  

Assumptions

Clients can cache whole files over long periods
Write/Write, Write/Read share are rare

Cells and Volumes

cell: administrative groups
cells broken into volumes
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Caching  

NFS Write: 

Dirty data are buffered on the client machine until file close or up to 30 seconds
File attributes in the client cache expire after 60 seconds 
when file is closed, all modified blocks sent to server. 

AFS

Callbacks: server tells clients "Invalidate" if the file changes. So the client may re-read it.
Remove Callback when client has flushed the data from its disk

Tradeoff: consistency, performance, scalability.

Client-side caching is a fundamental technique to improve scalability and performance. But 
raises important questions of cache consistency.

 

Name Space  

NFS: per-client linkage   vs.    AFS: global name space

NFS: no transparency

If a directory is moved from one server to another, client must remount
AFS: transparency

If a volume is moved from one server to another, only the volume location database on 
the servers needs to be updated

 

8 Distributed Replication  

Write replication requires some degree of consistency

Strict Consistency

Read always returns value from latest write
Sequential Consistency

All nodes see operations in some sequential order
Operations of each process appear in-order in this sequence

 
    

 

    

Causal Consistency
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P1: W(x)c  and P2: W(x)b  are concurrent so its not important that all processes see 
them in the same order
However Wx(a)  and R(x)a  and then W(x)b  are potentially causally related so they 
must be in order. 
This sequence is allowed with a causally-consistent store, but not with a sequentially 
consistent store.

 

8.1 Primary-backup Replication Model  

Assumptions:

Group membership manager: allow replica nodes to join/leave
Fail-stop failure model:  (not Byzantine) server may crash, might come up again.
Failure detector

 
    

 

    
 

    parimary backup

Primary backup: Writes always go to primary, read from any backup

At least once or at most once: Ack send back after Backup finish; or Ack send back only after 
commited logged at Primary 

Major drawback: Slow response times in case of failures.

 

8.2 Consensus Replication Model  

Quorum based consensus:

Designed to have fast response time even under failures
Operate as long as majority of machines is still alive
To handle  failures, must have  replicas
Major difference: you want replicated Write protocols so that you can write to multiple 
replicas instead of just one. 

 

Paxos approach: on multiple servers reaching consensus on a single value.

Requirements:

Correctness: Only a single value may be chosen. A machine never learns that a value 
has been chosen unless it really has been. The agreed value X has been proposed by 
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some node
Liveness: Some proposed value is eventually chosen. If a value is chosen, servers 
eventually learn about it
Fault-tolerance: If less than  nodes fail, the rest should reach agreement 
eventually
Note: Paxos sacrifices liveness in favor of correctness

Synchronous DS: bounded amount of time node can take to process and respond to a 
request

Asynchronous DS: timeout is not perfect

FLP Impossibility

It is impossible for a set of processors in an asynchronous system to agree on a binary 
value, even if only a single processor is subject to an unannounced failure.

 

     

    
 

    Paxos

Proposers, Acceptors, Learners

The key: once a proposal with value  is chosen, all higher proposals must have value , since 
 remains the highest accepted value (It occupies  servers). 

Remark: Only proposer knows chosen value (majority acccepted). No guarantee that 
proposer’s original value v is chosen by itself. Number  is basically a Lamport clock, always 
unique .

 

9 Byzantine Fault Tolerance  

Dependability implies the following:

Availability: probability the system operates correctly at any given moment
Reliability: ability to run correctly for a long interval of time
Safety: failure to operate correctly does not lead to catastrophic failures
Maintainability: ability to “easily” repair a failed system

BFT: Nodes may be malicious. Must agree on a value among benign nodes.

Quorum base:

Any two quorums must intersect at least one honest node.
For liveness, the quorum size must be at most .

, so . 
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GFS

Byzantine agreement  

Phase 1: Each process sends its value to the other processes.

Correct processes send the same (correct) value to all.  
Faulty processes may send different values to each if desired (or no message).

Phase 2: Each process uses the messages to create a vector of responses – must be a default 
value for missing messages.

Phase 3: Each process sends its vector to all other processes.

Phase 4: Each process the information received from every other process to do its 
computation.

10 GFS & MapReduce  

GFS is a distributed fault-tolerant file system

GFS Assumptions  

Small number of large files

Large streaming reads

Large, sequential writes that append

Concurrent appends by multiple clients

For concurrency, only need to lock a small size of disk

Client sends master: read(file name, chunk index)
Master’s reply: (chunk ID, chunk version number, locations of replicas)
Client sends “closest” chunkserver w/replica: read(chunk ID, byte range)
Chunkserver replies with data

GFS Master Server  

Holds all metadata:

namespace
access control information
mapping from files to chunks
current locations of chunks

Logs all client requests to disk sequentially

Replicates log entries to remote backup servers

Only replies to client after log entries safe on disk on self and backups!

Periodic checkpoints as an on-disk Btree
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GFS clients  

Master grant lease to primary (for each chunk) (60 sec), which is renewed using periodic 
heartbeat 

provide with 2 special operations:

snapshot: creating a copy of the current instance of a file or directory tree. 
append: allows clients to append data as an atomic operation without lock. Multiple 
processes can append to the same file concurrently

Fault tolerant:  

Master: Replays log from disk

Recovers namespace (directory) information, recovers file-to-chunk-ID mapping (but not 
location of chunks)
Asks chunkservers which chunks they hold, recovers chunk-ID-to-chunkserver mapping
If chunk server has older chunk, it’s stale; if chunk server has newer chunk, adopt its 
version number

Chunkserver dead:

Master notices missing heartbeats, decrements count of replicas for all chunks on dead 
chunkserver
Master re-replicates chunks missing replicas in background

 

MapReduce  

Programs implement Mapper  and Reducer  classes

Mapper: Generate <key,value>  pairs

Reducer: Iterate among all keys, outputs one or multiple <key,value>  pairs

Remarks:

Computation broken into many, short-lived tasks
Use disk storage to hold intermediate results

Limitations: spend too much time on I/O to disks and over network. This makes interactive 
data analysis impossible

 

11 Sparks  

In memory fault-tolerant computation

Resilient Distributed Dataset (RDD)

Immutable: cannot be modified once created. This enables lineage (recreate any RDD 
at any time) and is compatiable with HDFS (append only). 
Transformations: create new RDD from existing ones
Actions: compute a value based on an RDD. Either return or saved to an external 
storage system
Persist RDD to a memory

Transformations are lazy: their result RDD is not immediately computed. Their evaluation 
only triggered by Action! 

This enables spark to optimize the required operations; and allows Spark to recover from 
failures and slow workers
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By default, RDDs are recomputed each time you run an action on them. This can be 
expensive if you need to use the dataset more than once. Call persist()  or cache()  to 
cache an RDD in memory.

BSP computation abstraction: Any distributed system can be emulated as local work + 
message passing (=BSP)

Challenges: communication overheads and stragglers

P2P+selective communication, bounded-delay BSP

 

12 Mining Pools and Bitcoin  
12.1 Mining pools  

Partial Method used as measuring the amount of work a miner does

Naive solution: assign reward proportional to the amount of work.

Issue: If miners jump to new pools? 

The expected rewards: 
Do not reward each share equally!

Examples:

Slush's method: scoring function: . Gives advantage to miners who joined late.
Pay-per-share: the operator pays per each partial solution no matter if he managed to 
extend the chain.

Attacks:

Sabotage: Only submit partial solutions
Lie-in-wait: spread computing power over many pools. Once find one, wait a while only 
mining for that pool and then submit

 

12.2 Bitcoin Transactions  

In: where do you get your money?

prev_out : previous transaction（收⼊来源的交易账单）only hash + index (since there 
may be multiple out)
scriptSig :  your signature

Out:

value : how much you spend
scriptPubKey : public key of acceptor
The rest coins must be sent back to yourself

If tracing back each transaction, must end up with coinbase , which is generated by mining.

coinbase  has prev_out: hash = 0, n = 4294967295 .

Multisig: specify  public keys, verification requires  signatures.

Example: 2-of-3 multisig used for escrow transactions.

If either Alice or Bob does not fulfill his/her job, the third party (randomly selected) will 
give signature
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Pay to script hash (P2SH): the previous Pay to PublicKey Hash (P2PKH) is too complicated. 
The seller can design a script beforehead, so the buyer only need to send bitcoins to that 
hash address.

Lock time: designed for small transactions

 

12.3 Limitation and Improment  

throughput limitation: 7 transactions/sec, comparing to 2000-10000 for VISA
Hard-forking vs. soft-forking
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